G
R. Wang et al.
Letter
Synlett
Harada, S.; Oonishi, A.; Kiyama, H.; Yamaoka, Y.; Yamada, K.-i.;
Takasu, K. Angew. Chem. Int. Ed. 2016, 55, 13137. (j) Park, Y.;
Harper, K. C.; Kuhl, N.; Kwan, E. E.; Liu, R. Y.; Jacobsen, E. N.
Science 2017, 355, 162.
(10) For reviews on chiral-at-metal complexes in catalysis, see:
(a) Brunner, H. Angew. Chem. Int. Ed. 1999, 38, 1194. (b) Knight,
P. D.; Scott, P. Coord. Chem. Rev. 2003, 242, 125. (c) Fontecave,
M.; Hamelin, O.; Ménage, S. Top. Organomet. Chem. 2005, 15,
271. (d) Bauer, E. B. Chem. Soc. Rev. 2012, 41, 3153. (e) Gong, L.;
Chen, L.-A.; Meggers, E. Angew. Chem. Int. Ed. 2014, 53, 10868.
(f) Cao, Z.-Y.; Brittain, W. D. G.; Fossey, J. S.; Zhou, F. Catal. Sci.
Technol. 2015, 5, 3441.
(11) (a) Yu, J.; Jiang, H.-J.; Zhou, Y.; Luo, S.-W.; Gong, L.-Z. Angew.
Chem. Int. Ed. 2015, 54, 11209. (b) Jiang, H.-J.; Liu, K.; Wang, J.;
Li, N.; Yu, J. Org. Biomol. Chem. 2017, 15, 9077. (c) Jiang, H.-J.;
Liu, K.; Yu, J.; Zhang, L.; Gong, L.-Z. Angew. Chem. Int. Ed. 2017,
56, 11931. (d) Liu, K.; Jiang, H.-J.; Li, N.; Li, H.; Wang, J.; Zhang,
Z.-Z.; Yu, J. J. Org. Chem. 2018, 83, 6815. (e) Li, N.; Yu, H.; Wang,
R.; Shen, J.; Wu, W.-Q.; Liu, K.; Sun, T.-T.; Zhang, Z.-Z.; Yao, C.-Z.;
Yu, J. Tetrahedron Lett. 2018, 59, 3605. (f) Jiang, H.-J.; Zhong, X.-
M.; Yu, J.; Zhang, Y.; Zhang, X.; Wu, Y.-D.; Gong, L.-Z. Angew.
Chem. Int. Ed. 2019, 58, 1803.
(12) For selected reviews on catalysis by chiral anions, see:
(a) Lacour, J.; Hebbe-Viton, V. Chem. Soc. Rev. 2003, 32, 373.
(b) Lacour, J.; Moraleda, D. Chem. Commun. 2009, 7073.
(c) Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187.
(d) Wenzel, M.; Hiscock, J. R.; Gale, P. A. Chem. Soc. Rev. 2012, 41,
480. (e) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem.
2012, 4, 603. (f) Mahlau, M.; List, B. Angew. Chem. Int. Ed. 2013,
52, 518. (g) Brak, K.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2013,
52, 534. For selected examples, see: (h) Hamilton, G. L.; Kanai,
T.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 14984. (i) Mayer, S.;
List, B. Angew. Chem. Int. Ed. 2006, 45, 4193. (j) Hamilton, G. L.;
Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496.
(k) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120,
4901. (l) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem.
Int. Ed. 2000, 39, 1279. (m) Llewellyn, D. B.; Adamson, D.;
Arndtsen, B. A. Org. Lett. 2000, 2, 4165. (n) Carter, C.; Fletcher,
S.; Nelson, A. Tetrahedron: Asymmetry 2003, 14, 1995.
(13) For some reviews, see: (a) Lemieux, R. U.; Levine, S. Can. J. Chem.
1964, 42, 1473. (b) De Castro, M.; Marzabadi, C. H. Tetrahedron
2010, 66, 3395. For selected examples of syntheses of 2-deoxy-
2-iodoglycosides, see: (c) Rodríguez, M. Á.; Boutureira, O.;
Arnés, X.; Matheu, M. I.; Díaz, Y.; Castillón, S. J. Org. Chem. 2005,
70, 10297. (d) Kövér, A.; Boutureira, O.; Matheu, M. I.; Díaz, Y.;
Castillón, S. J. Org. Chem. 2014, 79, 3060. (e) Battina, S. K.;
Kashyap, S. Tetrahedron Lett. 2016, 57, 811.
(5) (a) Friesen, R. W.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111,
6656. (b) Suzuki, K.; Sulikowski, G. A.; Friesen, R. W.;
Danishefsky, S. J. J. Am. Chem. Soc. 1990, 112, 8895. (c) Sebesta,
D. P.; Roush, W. R. J. Org. Chem. 1992, 57, 4799. (d) Tanaka, H.;
Takahashi, D.; Takahashi, T. Angew. Chem. Int. Ed. 2006, 45, 770.
(e) Perret, P.; Slimani, L.; Briat, A.; Villemain, D.; Halimi, S.;
Demongeot, J.; Fagret, D.; Ghezzi, C. Eur. J. Nucl. Med. Mol.
Imaging 2007, 34, 734. (f) Wang, H.; Tao, J.; Cai, X.; Chen, W.;
Zhao, Y.; Xu, Y.; Yao, W.; Zheng, J.; Wan, Q. Chem. Eur. J. 2014,
20, 17319. (g) Pradhan, T. K.; Lin, C. C.; Mong, K.-K. T. Org. Lett.
2014, 16, 1474.
(6) (a) Thiem, J.; Karl, H.; Schwentner, J. Synthesis 1978, 696.
(b) Gammon, D. W.; Kinfe, H. H.; De Vos, D. E.; Jacobs, P. A.; Sels,
B. F. Tetrahedron Lett. 2004, 45, 9533. (c) Roush, W. R.; Narayan,
S.; Bennett, C. E.; Briner, K. Org. Lett. 1999, 1, 895. (d) Saeeng, R.;
Sirion, U.; Sirichan, Y.; Trakulsujaritchok, T.; Sahakitpichan, P.
Heterocycles 2010, 81, 2569. (e) Sirion, U.; Purintawarrakun, S.;
Sahakitpicchan, P.; Saeeng, R. Carbohydr. Res. 2010, 345, 2401.
(f) Reddy, T. R.; Rao, D. S.; Babachary, K.; Kashyap, S. Eur. J. Org.
Chem. 2016, 2016, 291. (g) Yuan, W.; Liu, Y.; Li, C. Synlett 2017,
28, 1975. (h) Kimura, T.; Takahashi, D.; Toshima, K. J. Org. Chem.
2015, 80, 9552. A similar reaction using 3,4-O-isopropylidene-
6-O-(tert-butyldiphenyl)silyl-protected glycosyl donors that
favor the -anomer was recently reported, see: (i) Yang, D.-M.;
Chen, Y.; Sweeney, R. P.; Lowary, T. L.; Liang, X.-Y. Org. Lett.
2018, 20, 2287.
(7) For leading reviews on asymmetric intermolecular halogena-
tion, see: (a) Chen, J.; Zhou, L. Synthesis 2014, 46, 586; and refer-
ences cited therein. (b) Cheng, Y. A.; Yu, W. Z.; Yeung, Y.-Y. Org.
Biomol. Chem. 2014, 12, 2333.
(8) For recent examples of asymmetric intermolecular halogena-
tions, see: (a) Li, L.; Su, C.; Liu, X.; Tian, H.; Shi, Y. Org. Lett. 2014,
16, 3728. (b) Qi, J.; Fan, G.-T.; Chen, J.; Sun, M.-H.; Dong, Y.-T.;
Zhou, L. Chem. Commun. 2014, 50, 13841. (c) Hu, D. X.; Seidl, F.
J.; Bucher, C.; Burns, N. Z. J. Am. Chem. Soc. 2015, 137, 3795.
(d) Soltanzadeh, B.; Jaganathan, A.; Staples, R. J.; Borhan, B.
Angew. Chem. Int. Ed. 2015, 54, 9517. (e) Denmark, S. E.; Carson,
N. Org. Lett. 2015, 17, 5728. (f) Landry, M. L.; Hu, D. X.;
McKenna, G. M.; Burns, N. Z. J. Am. Chem. Soc. 2016, 138, 5150.
(g) Zhou, P.; Cai, Y.; Zhong, X.; Luo, W.; Kang, T.; Li, J.; Liu, X.;
Lin, L.; Feng, X. ACS Catal. 2016, 6, 7778. (h) Wang, Z.; Lin, L.;
Zhou, P.; Liu, X.; Feng, X. Chem. Commun. 2017, 53, 3462.
(i) Zhou, P.; Lin, L.; Chen, L.; Zhong, X.; Liu, X.; Feng, X. J. Am.
Chem. Soc. 2017, 139, 13414. (j) Burckle, A. J.; Gál, B.; Seidl, F. J.;
Vasilev, V. H.; Burns, N. Z. J. Am. Chem. Soc. 2017, 139, 13562.
(k) Guo, S.; Cong, F.; Guo, R.; Wang, L.; Tang, P. Nat. Chem. 2017,
9, 546. (l) Horibe, T.; Tsuji, Y.; Ishihara, K. ACS Catal. 2018, 8,
6362.
(14) For a review, see: (a) Danishefsky, S. J.; Bilodeau, M. T. Angew.
Chem. Int. Ed. 1996, 35, 1380. For recent examples of syntheses
of deoxyglycosides from glycals, see: (b) Sau, A.; Williams, R.;
Palo-Nieto, C.; Franconetti, A.; Medina, S.; Galan, M. C. Angew.
Chem. Int. Ed. 2017, 56, 3640. (c) Palo-Nieto, C.; Sau, A.; Galan,
M. C. J. Am. Chem. Soc. 2017, 139, 14041. (d) Sau, A.; Galan, M. C.
Org. Lett. 2017, 19, 2857. (e) Palo-Nieto, C.; Sau, A.; Williams, R.;
Galan, M. C. J. Org. Chem. 2017, 82, 407. (f) Zhao, G.; Wang, T.
Angew. Chem. Int. Ed. 2018, 57, 6120.
(9) For selected reviews, see: (a) Toshima, K.; Tatsuta, K. Chem. Rev.
1993, 93, 1503. (b) Seeberger, P. H.; Werz, D. B. Nature 2007,
446, 1046. (c) Boltje, T. J.; Buskas, T.; Boons, G.-J. Nat. Chem.
2009, 1, 611. (d) Zhu, X.; Schmidt, R. R. Angew. Chem. Int. Ed.
2009, 48, 1900. (e) Yu, B.; Sun, J.; Yang, X. Acc. Chem. Res. 2012,
45, 1227. (f) Ranade, S. C.; Demchenko, A. V. J. Carbohydr. Chem.
2013, 32, 1. (g) Nigudkar, S. S.; Demchenko, A. V. Chem. Sci.
2015, 6, 2687. (h) Yang, Y.; Zhang, X. H.; Yu, B. Nat. Prod. Rep.
2015, 32, 1331.
(15) 2-Deoxy-2-Iodoglycoside 4aa; Typical Procedure
A 10-mL oven-dried vial was charged with catalyst Λ-1c (7.2
mg, 0.01 mmol), NIS (24.8 mg, 0.11 mmol), activated 4 Å MS
(100 mg), glycal 2a (41.6 mg, 0.10 mmol), and distilled CH2Cl2 (1
mL) at r.t. in the absence of light. Alcohol 3a (0.12 mmol) was
added and the resulting solution was stirred vigorously under
N2 for 24 h. The reaction was then quenched with Et3N (140 L,
1.0 mmol) and sat. aq Na2S2O3 (0.2 mL). The mixture was puri-
fied by flash column chromatography to give the 2-deoxy-2-
iodoglycosides 4aa as an / mixture.
4aa
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–H