Journal of the American Chemical Society
COMMUNICATION
’ AUTHOR INFORMATION
azodicarboxylate; it is proposed that the reaction proceeds via the
ethoxycarbonyl radicals. (j) Yu, W.-Y.; Sit, W. N.; Lai, K.-M.; Zhou,
Z.; Chan, A. S. C. J. Am. Chem. Soc. 2008, 130, 3304. To formic acid
(k) Shibahara, F.; Kinoshita, S.; Nozaki, K. Org. Lett. 2004, 6, 2437. To
nitriles; (l) Zhou, C.; Larock, R. C. J. Org. Chem. 2006, 71, 3551.
(m) Zhou, C.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 2302.
(7) (a) Price, R. T.; Anderson, R. A.; Muetterties, E. L. J. Organomet.
Chem. 1989, 376, 407. (b) Boyd, S. E.; Field, L. D; Hambley, T. W.;
Partridge, M. G. Organometallics 1993, 12, 1720. (c) Fagnou, K.;
Lautens, M. Chem. Rev. 2003, 103, 169.
(8) For examples of catalyst regeneration from metal carboxylates
using organoaluminum or zinc reagents, see refs 2a, 2g-2j.
(9) No carboxylation product was obtained without rhodium cata-
lyst under the reaction conditions, and therefore, the possibility of
Al-promoted carboxylation of arenes was ruled out. For example of
Al-promoted carboxylation of arenes, see Olah, G. A.; T€or€ok, B.;
Joschek, J. P.; Bucsi, I.; Esteves, P. M.; Rasul, G.; Prakash, G. K. S.
J. Am. Chem. Soc. 2002, 124, 11379.
(10) In all cases except for the reaction of furan-derivative 2i
(Table 2, entry 9), formation of o-methylated products was observed
in about 4-15% yield.
(11) Small amounts of o-methylated products (4-7%) were ob-
served.
(12) C-H activation by rhodium carboxylate complex D followed
by transmetalation and reductive elimination should be considered as
another possible pathway to give arylrhodium(I) complex B. Prelimin-
ary mechanistic studies showed that the transmetalation of a rhodium
carboxylate complex with AlMe2(OMe) is very fast and proceeded even
at room temperature, whereas the C-H activation of phenylpyridine by
a rhodium carboxylate complex did not occur under the reaction
conditions. Therefore, we currently believe that the transmetalation
precedes the C-H activation as in Scheme 1. Details will be reported in
due course.
Corresponding Author
’ ACKNOWLEDGMENT
This research was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas “Molecular Activation Directed
toward Straightforward Synthesis” (No. 22105006), a Grant-in-
Aid for Scientific Research (A) (No. 21245024) and a Grant-in-
Aid for Scientific Research on Innovative Areas (No. 20200049)
from the Ministry of Education, Culture, Sports, Science, and
Technology of Japan.
’ REFERENCES
(1) Reviews on transition metal-promoted CO2-fixation reactions,
see (a) Braunstein, P.; Matt, D.; Nobel, D. Chem. Rev. 1988, 88, 747.
(b) Yin, X.; Moss, J. R. Coord. Chem. Rev. 1999, 181, 27. (c) Sakakura, T.;
Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.(d) Carbon Dioxide
as Chemical Feedstock; Aresta, M., Ed.; Wiley-VCH: Weinheim, 2010.
(e) Correa, A.; Martín, R. Angew. Chem., Int. Ed. 2009, 48, 6201.
(f) Riduan, S. N.; Zhang, Y. Dalton Trans. 2010, 39, 3347.
(2) For recent examples of transition metal-catalyzed carboxylation
under CO2 atmosphere, see (a) Mori, M. Eur. J. Org. Chem. 2007, 4981.
(b) Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2006,
128, 8706. (c) Takaya, J.; Tadami, S.; Ukai, K.; Iwasawa, N. Org. Lett.
2008, 10, 2697. (d) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int.
Ed. 2008, 47, 5792. (e) Ochiai, H.; Jang, M.; Hirano, K.; Yorimitsu, H.;
Oshima, K. Org. Lett. 2008, 10, 2681. (f) Yeung, C. S.; Dong, V. M. J. Am.
Chem. Soc. 2008, 130, 7826. (g) Williams, C. M.; Johnson, J. B.; Rovis, T.
J. Am. Chem. Soc. 2008, 130, 14936. (h) Takaya, J.; Iwasawa, N. J. Am.
Chem. Soc. 2008, 130, 15254. (i) Correa, A.; Martín, R. J. Am. Chem. Soc.
2009, 131, 15974. (j) Johnson, M. T.; Johansson, R.; Kondrashov, M. V.;
Steyl, G.; Ahlquist, M. S. G.; Roodt, A.; Wendt, O. F. Organometallics
2010, 29, 3521, and references cited therein.
(3) (a) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132,
8858. During preparation of this manuscript, Cu(I)-catalyzed similar
reactions were reported by the same group and Hou's group.
(b) Boogaerts, I. I. F.; Fortman, G. C.; Furst, M. R. L.; Cazin, C. S. J.;
Nolan, S. P. Angew. Chem., Int. Ed. 2010, 49, 8674. (c) Zhang, L.; Cheng,
J.; Ohishi, T.; Hou, Z. Angew. Chem., Int. Ed. 2010, 49, 8670. See also
(d) Vechorkin, O.; Hirt, N.; Hu, X. Org. Lett. 2010, 12, 3567.
(4) For a review of Rh-catalyzed functionalization via C-H activa-
tion, see Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010,
110, 624.
(5) See ref 2b. See also, (a) Kolomnikov, I. S.; Gusev, A. O.;
Belopotapova, T. S.; Grigoryan, M. K.; Lysyak, T. V.; Struchkov, Yu. T.;
Vol'pin, M. E. J. Organomet. Chem. 1974, 69, C10. (b) Albano, P.; Aresta,
M.; Manassero, M. Inorg. Chem. 1980, 19, 1069. (c) Darensbourg, D. J.;
Gr€otsch, G.; Wiegreffe, P.; Rheingold, A. L. Inorg. Chem. 1987, 26, 3827.
(6) For examples of addition of arylmetallic species generated by
C-H bond activation to polar CdX bond: To ketene; (a) Hong, P.;
Yamazaki, H.; Sonogashira, K.; Hagihara, N. Chem. Lett. 1978, 535. To
aldehydes; (b) Kuninobu, Y.; Nishina, Y.; Takeuchi, T.; Takai, K. Angew.
Chem., Int. Ed. 2007, 46, 6518. (c) Kuninobu, Y.; Matsuki, T.; Takai, K.
Org. Lett. 2010, 12, 2948, and references cited therein. (d) Baslꢀe, O.;
Bidange, J.; Shuai, Q.; Li, C.-J. Adv. Synth. Catal. 2010, 352, 1145. (e) Jia,
X.; Zhang, S.; Wang, W.; Luo, F.; Cheng, J. Org. Lett. 2009, 11, 3120. To
isocyanate; (f) Kuninobu, Y.; Kikuchi, K.; Tokunaga, Y.; Nishina, Y.;
Takai, K. Tetrahedron 2008, 64, 5974. (g) Kuninobu, Y.; Tokunaga, Y.;
Kawata, A.; Takai, K. J. Am. Chem. Soc. 2006, 128, 202. To ketone;
(h) Tsuchikama, K.; Hashimoto, Y.; Endo, K.; Shibata, T. Adv. Synth.
Catal. 2009, 351, 2850. To chlorocarbonyl compounds; it is proposed
that the reaction proceeds via oxidative addition of a C-Cl bond of the
chlorocarbonyl group. (i) Kochi, T.; Urano, S.; Seki, H.; Mizushima, E.;
Sato, M.; Kakiuchi, F. J. Am. Chem. Soc. 2009, 131, 2792. To diethyl
1253
dx.doi.org/10.1021/ja109097z |J. Am. Chem. Soc. 2011, 133, 1251–1253