synthesis of 5 requires 4 steps, some using very strong
conditions, and proceeds in only low overall yield (17%).
equiv of a diketone affords PQ derivatives in only 3 steps
from a commercially available tetraaminobenzene. When zinc
was replaced by iron powder as the reducing agent under
the same reaction conditions, it was found that selective
reduction of only one thiadiazole ring in BBT occurred, thus
affording a route to TQ derivatives by condensation with 1
equiv of the diketone. A smaller excess of reducing agent is
required in the synthesis of TQ as compared to PQ deriva-
tives as only one ring is reduced. This selectivity is due to
the hypervalent sulfur in one ring in BBT making the
reduction of BBT to BT more facile than the reduction of
BT.
This synthetic inefficiency in the preparation of compounds
4 and 5, which had previously been used as intermediates
in the synthesis of benzobisthiadiazole (BBT) derivatives,
was a major motivation for us to develop our recently
reported efficient (87% yield) one-pot synthesis of 4,8-
dibromobenzo[1,2-c;4,5-c′]bis[1,2,5]thiadiazole (7).3 Having
developed a short and high yielding route to the dibromo-
BBT 7 and its dithienyl adduct (TBBT), we were then
interested to explore whether reduction of BBT derivatives
might offer an effective method for obtaining PQ and TQ
derivatives. As shown in Scheme 2, we now report that
To test the versatility of the reaction procedure and to
investigate how the properties of PQ and TQ molecules
could be tuned, we chose to make derivatives with biphenyl
(Figure 1, TQ1 and PQ1) and dithienyl (TQ2 and PQ2)
Scheme 2
.
Novel Synthetic Route to Dithienyl-TQ and
Dithienyl-PQ Derivatives
reduction of TBBT by stirring with a large excess of zinc
powder in acetic acid at 80 °C followed by addition of 2
Figure 1. Target molecules: PQ1-2 and TQ1-2, and literature
models PQ0 and TQ0 for comparison.
(1) (a) Ingana¨s, O.; Zhang, F.; Tvingstedt, K.; Andersson, L. M.;
Hellstrom, S.; Andersson, M. R. AdV. Mater. 2010, 22 (20), E100. (b) Zhang,
G.; Fu, Y.; Zhang, Q.; Xie, Z. Polymer 2010, 51 (11), 2313. (c) Zhang, X.;
Steckler, T. T.; Dasari, R. R.; Ohira, S.; Potscavage, W. J., Jr.; Tiwari,
S. P.; Coppee, S.; Ellinger, S.; Barlow, S.; Bredas, J.-L.; Kippelen, B.;
Reynolds, J. R.; Marder, S. R. J. Mater. Chem. 2010, 20 (1), 123. (d) Lee,
Y.; Russell, T. P.; Jo, W. H. Org. Electron. 2010, 11 (5), 846. (e) Luo, M.;
Shadnia, H.; Qian, G.; Du, X.; Yu, D.; Ma, D.; Wright, J. S.; Wang, Z. Y.
Chem.sEur. J. 2009, 15 (35), 8902. (f) Zoombelt, A. P.; Fonrodona, M.;
Turbiez, M. G. R.; Wienk, M. M.; Janssen, R. A. J. J. Mater. Chem. 2009,
19 (30), 5336. (g) Zoombelt, A. P.; Fonrodona, M.; Wienk, M. M.; Sieval,
A. B.; Hummelen, J. C.; Janssen, R. A. J. Org. Lett. 2009, 11 (4), 903. (h)
Yu, C.-Y.; Chen, C.-P.; Chan, S.-H.; Hwang, G.-W.; Ting, C. Chem. Mater.
2009, 21 (14), 3262. (i) Mastalerz, M.; Fischer, V.; Ma, C.-Q.; Janssen,
R. A. J.; Bau¨erle, P. Org. Lett. 2009, 11 (20), 4500. (j) Zhang, F.; Bijleveld,
J.; Perzon, E.; Tvingstedt, K.; Barrau, S.; Inganas, O.; Andersson, M. R. J.
Mater. Chem. 2008, 18 (45), 5468. (k) Cheng, K.-F.; Chueh, C.-C.; Lin,
C.-H.; Chen, W.-C. J. Polym. Sci., Part A: Polym. Chem. 2008, 46 (18),
6305. (l) Hunan, Y.; Richard, G. J.; Ahmed, I.; David, M.; Richard, R.;
David, G. L. Macromol. Rapid Commun. 2008, 29 (22), 1804. (m) Petersen,
M. H.; Hagemann, O.; Nielsen, K. T.; Jørgensen, M.; Krebs, F. C. Sol.
Energy Mater. Sol. Cells 2007, 91 (11), 996. (n) Perzon, E.; Zhang, F.;
Andersson, M.; Mammo, W.; Ingana¨s, O.; Andersson, M. R. AdV. Mater.
2007, 19 (20), 3308. (o) Gadisa, A.; Mammo, W.; Andersson, L. M.;
Admassie, S.; Zhang, F.; Andersson, M. R.; Inganas, O. AdV. Funct. Mater.
2007, 17 (18), 3836. (p) Zhang, F.; Mammo, W.; Andersson, L. M.;
Admassie, S.; Andersson, M. R.; Ingana¨s, O. AdV. Mater. 2006, 18 (16),
2169. (q) Wienk, M. M.; Turbiez, M. G. R.; Struijk, M. P.; Fonrodona, M.;
Janssen, R. A. J. Appl. Phys. Lett. 2006, 88 (15), 153511. (r) Wang, X.;
Perzon, E.; Oswald, F.; Langa, F.; Admassie, S.; Andersson, M. R.; Inganas,
O. AdV. Funct. Mater. 2005, 15 (10), 1665.
substituents. Since TQ0 and PQ0,2 the reference molecules
chosen from the literature for comparison of properties, are
not very soluble, longer solubilizing alkyl or alkoxy chains
were incorporated.
As shown in Scheme 3, the biphenyl diketone 12 was
prepared in good yield by Suzuki coupling of 10 and 11.
The corresponding dithienyl diketone 15 was prepared by
Stille coupling of 13 and 14.
Reduction of TBBT with zinc followed by condensation
of the resulting crude tetraamine with 12 afforded PQ1 in
31% yield (22% overall yield). The condensation with 15
was less efficient producing PQ2 in only 17% yield (12%
overall). The condensations of the diketones with the crude
diamine from reduction of TBBT with iron proceeded in
much higher yields with TQ1 and TQ2 being obtained in
82% and 65% yield, respectively (58% and 46% overall
(2) (a) Kitamura, C.; Tanaka, S.; Yamashita, Y. Chem. Lett. 1996, 25
(1), 63. (b) Kitamura, C.; Tanaka, S.; Yamashita, Y. Chem. Mater. 1996,
8 (2), 570.
(3) Tam, T. L.; Li, H.; Wei, F.; Tan, K. J.; Kloc, C.; Lam, Y. M.;
Mhaisalkar, S. G.; Grimsdale, A. C. Org. Lett. 2010, 12 (15), 3340.
Org. Lett., Vol. 13, No. 1, 2011
47