SULFUR-BRIDGED ANALOGUES
12c-Methyl-12-phenyl-8-aza-4-oxa-12-thia-tricornan 11
[3] Compounds 1 and 2 are 4,8,12-trioxadibenzo[cd,mn]pyrene and
4,8,12-trialkyl-8,12-dihydro-4H-benzo[1,8][2,7]naphthyridino[3,4,5,6-
klmn]acridine cations respectively.
The reaction was conducted under dinitrogen atmosphere. To a
suspension of 4-Phenyl-4-aza-8-oxa-12-thiotriangulenium tetra-
fluoroborate [9][BF4] (47.6 mg, 0.10 mmol) in THF (4 mL) at 0 8C
was added an excess of MeLi in ether (100 mL, 0.16 mmol). The
purple suspension turned to a colorless solution. The reaction
mixture was allowed to reach room temperature (2 h) and further
stirred during 2 h. The reaction was quenched by addition of
two drops of ethanol, and ether (60 mL). The organic layer was
washed with water (3 ꢂ 60 mL), dried over Na2SO4 and con-
centrated under reduced pressure. The titled compound was
purified by flash chromatography over basic alumina (CH2Cl2/
pentane, 80/20, L ¼ 9 cm, Ø ¼ 2.3 cm, Rf ¼ 0.47) yielding 11 as a
colorless viscous residue (22.0 mg, 0.056 mmol, 55%). 1H NMR
(CD2Cl2, 400 MHz): d ¼ 7.64 (t, J ¼ 7.83 Hz, 2H), 7.53 (t, J ¼ 7.08 Hz,
1H), 7.33 (d, J ¼ 7.84 Hz, 2H), 7.21 (t, J ¼ 7.33 Hz, 1H), 7.06 (d,
J ¼ 7.83 Hz, 1H), 7.00–6.82 (m, 4H), 6.68 (d, J ¼ 8.09 Hz, 1H), 6.12 (d,
J ¼ 8.33 Hz, 1H), 5.96 (d, J ¼ 8.34 Hz, 1H), 1.56 (s, 3H); 13C NMR
(CDCl3, 100 MHz): d ¼ 151.6 (C), 151.6 (C), 141.6 (C), 141.5 (C), 140.7
(C), 131.5 (C), 131.2 (C), 131.1 (CH), 128.8 (CH), 128.0 (CH), 127.8
(CH), 127.2 (CH), 124.0 (C), 121.7 (C), 120.3 (CH), 118.4 (CH), 114.4
(CH), 112.7 (CH), 111.2 (C), 108.8 (CH), 108.5 (CH), 32.16 (C), 27.9
(CH3); IR (film): n ¼ 3060, 2953, 2923, 2853, 1617, 1604, 1584, 1496,
1471, 1443, 1357, 1333, 1306, 1255, 1221, 1181, 1144, 1095, 1070,
1044, 1003, 973, 935, 870, 834, 769, 732, 700, 662, 637, 616, 589,
[4] A. Pothukuchy, C. L. Mazzitelli, M. L. Rodriguez, B. Tuesuwan, M.
Salazar, J. S. Brodbelt, S. M. Kerwin, Biochemistry 2005, 44,
2163–2172.
[5] J. Reynisson, G. B. Schuster, S. B. Howerton, L. D. Williams, R. N.
Barnett, C. L. Cleveland, U. Landman, N. Harrit, J. B. Chaires, J. Am.
Chem. Soc. 2003, 125, 2072–2083.
[6] A. Pothukuchy, S. Ellapan, K. R. Gopidas, M. Salazar, Bioorg. Med. Chem.
Lett. 2003, 13, 1491–1494.
[7] B. W. Laursen, T. J. Sorensen, J. Org. Chem. 2009, 74, 3183–3185.
[8] B. W. Laursen, F. C. Krebs, M. F. Nielsen, K. Bechgaard, J. B. Christensen,
N. Harrit, J. Am. Chem. Soc. 1998, 120, 12255–12263.
[9] B. W. Laursen, F. C. Krebs, Chem. Eur. J 2001, 7, 1773–1783.
[10] T. J. Sørensen, B. W. Laursen, R. Luchowski, T. Shtoyko, I. Akopova, Z.
Gryczynski, I. Gryczynski, Chem. Phys. Lett. 2009, 476, 46–50.
[11] B. W. Laursen, J. Reynisson, K. V. Mikkelsen, K. Bechgaard, N. Harrit,
Photochem. Photobiol. Sci. 2005, 4, 568–576.
[12] S. Dileesh, K. R. Gopidas, J. Photochem. Photobiol. A 2004, 162,
115–120.
[13] F. C. Krebs, H. Spanggaard, N. Rozlosnik, N. B. Larsen, M. Jorgensen,
Langmuir 2003, 19, 7873–7880.
[14] F. C. Krebs, Tetrahedron Lett. 2003, 44, 17–21.
[15] J. Reynisson, R. Wilbrandt, V. Brinck, B. W. Laursen, K. Norgaard,
N. Harrit, A. M. Brouwer, Photochem. Photobiol. Sci. 2002, 1,
763–773.
[16] S. Dileesh, K. R. Gopidas, Chem. Phys. Lett. 2000, 330, 397–402.
[17] G. Allinson, R. J. Bushby, J. L. Paillaud, M. Thornton-Pett, J. Chem. Soc.
Perkin Trans. 1 1995, 385–390.
[18] G. Allinson, R. J. Bushby, J. L. Paillaud, D. Oduwole, K. Sales, J. Am.
Chem. Soc. 1993, 115, 2062–2064.
565, 536 cmꢀ1
.
[19] J. Guin, C. Besnard, J. Lacour, Org. Lett. 2010, 12, 1748–1751.
[20] S. K. Narasimhan, D. J. Kerwood, L. Wu, J. Li, R. Lombardi, T. B.
Freedman, Y.-Y. Luk, J. Org. Chem. 2009, 74, 7023–7033.
[21] S. K. Narasimhan, X. Lu, Y.-Y. Luk, Chirality 2008, 20, 878–884.
[22] P. Mobian, C. Nicolas, E. Francotte, T. Bu¨rgi, J. Lacour, J. Am. Chem. Soc.
2008, 130, 6507–6514.
[23] M. Lofthagen, J. S. Siegel, M. Hackett, Tetrahedron 1995, 51,
6195–6208.
[24] M. Lofthagen, J. S. Siegel, J. Org. Chem. 1995, 60, 2885–2890.
[25] M. Lofthagen, R. VernonClark, K. K. Baldridge, J. S. Siegel, J. Org. Chem.
1992, 57, 61–69.
9-(2,6-Dimethoxyphenyl)-1,8-dimethoxy-9H-thioxanthene 17
To a solution of [7][BF4] (22.0 mg, 0.045 mmol) in CH2Cl2 (4 mL)
was added tetrabutylammonium borohydride nBu4NBH4 (12.80 mg,
0.05 mmol) at room temperature. The green solution became
spontaneously colorless. The reaction mixture was stirred for 30 s
and was concentrated under reduced pressure. The white residue
was purified by chromatography over silica gel (CH2Cl2/pentane,
50/50, L ¼ 8.7 cm, Ø ¼ 2.3 cm, Rf ¼ 0.36) affording the product 17
as a white solid (9.9 mg, 0.025 mmol, 55%). 1H NMR (CD2Cl2,
300 MHz): d ¼ 7.07 (t, J ¼ 8.39 Hz, 1H), 7.06 (t, J ¼ 8.00 Hz, 2H), 6.78
(d, J ¼ 7.91 Hz, 2H), 6.59 (d, J ¼ 8.1 Hz, 2H), 6.52 (d, J ¼ 8.30 Hz, 2H),
6.41 (s, 1H), 3.82 (s, 6H), 3.70 (s, 6H); 13C NMR (CD2Cl2, 75 MHz):
d ¼ 159.0 (C), 158.2 (C), 133.5 (C), 126.9 (2 ꢂ CH), 122.6 (C), 121.9
(C), 117.3 (CH), 107.9 (CH), 104.3 (CH), 55.6 (OCH3), 55.3 (OCH3),
29.5 (CH); IR (neat): n ¼ 3329, 2991, 2930, 2830, 1693, 1646, 1621,
1586, 1558, 1472, 1461, 1430, 1372, 1333, 1308, 1271, 1242, 1213,
1149, 1110, 894, 885, 850, 808, 782, 765, 741, 718, 707, 683, 642,
625, 603, 580 cmꢀ1; HRMS (ESI-TOF, m/z): Calcd for C23H22NaO4Sþ
[Mþ]: 417.1136. Found: 417.1131; Mp: >320 8C (decomposition).
[26] M. Lofthagen, R. Chadha, J. S. Siegel, J. Am. Chem. Soc. 1991, 113,
8785–8790.
[27] J. B. Simonsen, K. Kjaer, P. Howes, K. Norgaard, T. Bjornholm, N. Harrit,
B. W. Laursen, Langmuir 2009, 25, 3584–3592.
[28] B. Baisch, D. Raffa, U. Jung, O. M. Magnussen, C. Nicolas, J. Lacour, J.
Kubitschke, R. Herges, J. Am. Chem. Soc. 2009, 131, 442–443.
[29] C. Nicolas, J. Lacour, Org. Lett. 2006, 8, 4343–4346.
[30] C. Nicolas, C. Herse, J. Lacour, Tetrahedron Lett. 2005, 46, 4605–4608.
[31] B. Laleu, C. Herse, B. W. Laursen, G. Bernardinelli, J. Lacour, J. Org.
Chem. 2003, 68, 6304–6308.
[32] C. Herse, D. Bas, F. C. Krebs, T. Bu¨rgi, J. Weber, T. Wesolowski, B. W.
Laursen, J. Lacour, Angew. Chem. Int. Ed. 2003, 42, 3162–3166.
[33] B. Laleu, P. Mobian, C. Herse, B. W. Laursen, G. Hopfgartner, G.
Bernardinelli, J. Lacour, Angew. Chem. Int. Ed. 2005, 44, 1879–1883.
[34] B. Laleu, M. S. Machado, J. Lacour, Chem. Commun. 2006, 2786–2788.
[35] C. Villani, B. Laleu, P. Mobian, J. Lacour, Chirality 2007, 19, 601–606.
[36] The parent carbinol derivative of cation 10þ has been previously
synthesized. See the next reference.
[37] G. D. Figuly, C. K. Loop, J. C. Martin, J. Am. Chem. Soc. 1989, 111,
654–658.
Acknowledgements
[38] M. Watanabe, M. Date, M. Tsukazaki, S. Furukawa, Chem. Pharm. Bull.
1989, 37, 36–41.
[39] M. Wada, H. Mishima, T. Watanabe, S. Natsume, H. Konishi, K.
Kirishima, S. Hayase, T. Erabi, Bull. Chem. Soc. Jpn. 1995, 68, 243–249.
[40] As determined by 1H-NMR and electrospray mass spectrometry
analysis.
We are grateful for financial support of this work by the Swiss
National Science Foundation, the State Secretariat for Education
´ ´
´
`
and Research, and the Societe Academique de Geneve.
[41] P. L. Bernad, S. Khan, V. A. Korshun, E. M. Southern, M. S. Shchepinov,
Chem. Commun. 2005, 3466–3468.
[42] This higher electrophilicity can be partly attributed to the lower
p-electron-donating ability of sulfur vs. oxygen (sþ ꢀ0.16 and ꢀ0.65
for p-SMe and p-OMe respectively): C. D. Ritchie, W. F. Sager, Prog.
Phys. Org. Chem. 2007, 323–400.
REFERENCES
[1] J. C. Martin, R. G. Smith, J. Am. Chem. Soc. 1964, 86, 2252–2256.
[2] B. W. Laursen, F. C. Krebs, Angew. Chem. Int. Ed. 2000, 39, 3432–3434.
J. Phys. Org. Chem. 2010, 23 1049–1056
Copyright ß 2010 John Wiley & Sons, Ltd.
View this article online at wileyonlinelibrary.com