Communication
ChemComm
7 (a) R. Noyori and T. Ohkuma, Angew. Chem., Int. Ed., 2001, 40, 40;
(b) Transition Metals for Organic Synthesis, ed. M. Beller and C. Bolm,
Wiley-VCH, Weinheim, Germany, 2nd edn, 2004; (c) W. Tang and
X. Zhang, Chem. Rev., 2003, 103, 3029; (d) T. Ikariya and J. Blacker,
Acc. Chem. Res., 2007, 40, 1300; (e) T. Ikariya, Top. Organomet. Chem.,
2011, 37, 31; ( f ) S. E. Clapham, A. Hadzovic and R. H. Morris, Coord.
Chem. Rev., 2004, 248, 2201.
8 N. V. Belkova, L. M. Epstein, O. A. Filippov and E. S. Shubina, Chem.
Rev., 2016, 116, 8545.
9 C. Gemel, K. Folting and K. G. Caulton, Inorg. Chem., 2000, 39, 1593.
10 (a) K. Hiraki, J. Tsutsumida and Y. Fuchita, Chem. Lett., 1986, 337;
(b) K. Hiraki, Y. Fuchita, Y. Ohta, J. Tsutsumida and K. I. Hardcastle,
J. Chem. Soc., Dalton Trans., 1992, 833; (c) X. Ribas, D. A. Jacson,
alkyne. Consequently, active species switched from B1 to A1 upon
protonation of the Rh–C bond in the NCNC ligand.
In conclusion, new NCN pincer Rh complexes containing
secondary amino groups as tethered coordinating groups were
prepared. The molecular structures of NCN pincer complexes 2
and 3 included five-coordinated square planar geometries
with the anti configuration of the N–H bonds and the S
absolute configuration at the nitrogen atoms. Acetate complex
3 underwent intermolecular C–H bond activation to give double
cyclometalated complex 4, which contained unique NCNC
tetradentate coordination with the syn configuration of the
N–H bonds. In asymmetric alkynylation of terminal alkynes
with b-ketoesters, the NCN and NCNC Rh complexes acted as
chiral switchable catalysts for the formation of both enantio-
mers. This switching system based on the NCN and NCNC Rh
complexes is not yet fully reversible and requires different
reactions such as heating reaction and addition of an alkyne.
This research was supported by a Grant-in-Aid for Scientific
Research from the Japan Society for the Promotion of Science
(No. 26410114 and 15H03808).
´
B. Donnadieu, J. Mahıa, T. Parella, R. Xifra, B. Hedman,
K. O. Hodgson, A. Llobet and T. D. P. Stack, Angew. Chem., Int.
Ed., 2002, 41, 2991; (d) R. Xifra, X. Ribas, A. Llobet, A. Poater,
`
M. Duran, M. Sola, T. D. P. Stack, J. Benet-Buchholz, B. Donnadieu,
´
J. Mahıa and T. Parella, Chem. – Eur. J., 2005, 11, 5146; (e) A. Casitas,
`
M. Canta, M. Sola, M. Costas and X. Ribas, J. Am. Chem. Soc., 2011,
´
133, 19386; ( f ) X. Ribas, C. Calle, A. Poater, A. Casitas, L. Gomez,
R. Xifra, T. Parella, J. Benet-Buchholz, A. Schweiger, G. Mitrikas,
`
M. Sola, A. Llobet and T. D. P. Stack, J. Am. Chem. Soc., 2010,
132, 12299.
11 (a) T. Arai, T. Moribatake and H. Masu, Chem. – Eur. J., 2015,
21, 10671; (b) T. Arai, I. Oka, T. Morihata, A. Awata and H. Masu,
Chem. – Eur. J., 2013, 19, 1554.
12 M. Albrecht, Chem. Rev., 2010, 110, 576.
13 (a) M. Albrecht and G. van Koten, Angew. Chem., Int. Ed., 2001,
40, 3750; (b) M. E. van der Boom and D. Milstein, Chem. Rev., 2003,
103, 1759; (c) J. Choi, A. H. R. MacArthur, M. Brookhart and
A. S. Goldman, Chem. Rev., 2011, 111, 1761; (d) N. Selander and
K. J. Szabo, Chem. Rev., 2011, 111, 2048.
Conflicts of interest
There are no conflicts to declare.
14 See the ESI†.
15 The charge-transfer (CT) stabilization energy was analysed by the
second-order perturbation with the natural bond orbitals (NBOs),
and the presence of significant LP(O)-s*(N–H) CT interactions (22.2
kcal molÀ1) was confirmed.
Notes and references
1 (a) M. Barboiu and J.-M. Lehn, Proc. Natl. Acad. Sci. U. S. A., 2002,
99, 5201; (b) M. Marchivie, P. Guionneau, J. A. K. Howard,
16 (a) M. Gerisch, J. R. Krumper, R. G. Bergman and T. D. Tilley, J. Am.
Chem. Soc., 2001, 123, 5818; (b) A. A. H. van der Zeijden, G. van Koten,
J. M. Ernsting, C. J. Elsevier, B. Krijnen and C. H. Stam, J. Chem. Soc.,
Dalton Trans., 1989, 317; (c) W. J. Hoogervorst, K. Goubitz, J. Fraanje,
M. Lutz, A. L. Spek, J. M. Ernsting and C. J. Elsevier, Organometallics,
2004, 23, 4550; (d) B. Rybtchinski, A. Vigalok, Y. Ben-David and
D. Milstein, J. Am. Chem. Soc., 1996, 118, 12406.
17 (a) A. A. H. van der Zeijden, G. van Koten, R. Luijk, K. Vrieze, C. Slob,
H. Krabbendam and A. L. Spek, Inorg. Chem., 1998, 27, 1014;
(b) Y. Motoyama, M. Okano, H. Narusawa, N. Makihara, K. Aoki
and H. Nishiyama, Organometallics, 2001, 20, 1580.
´
G. Chastanet, J.-F. Letard, A. E. Goeta and D. Chasseau, J. Am. Chem.
Soc., 2002, 124, 194; (c) L. R. Holloway, H. H. McGarraugh,
M. C. Young, W. Sontising, G. J. O. Beran and R. J. Hooley, Chem.
Sci., 2016, 7, 4423; (d) M. Su¨ßner and H. Plenio, Angew. Chem., Int.
Ed., 2005, 44, 6885; (e) G.-H. Ouyang, Y.-M. He, Y. Li, J.-F. Xiang and
Q.-H. Fan, Angew. Chem., Int. Ed., 2015, 54, 4334; ( f ) M. Galli,
J. E. M. Lewis and S. M. Goldup, Angew. Chem., Int. Ed., 2015,
54, 13545; (g) S. Semwal and J. Choudhury, ACS Catal., 2016, 6, 2424.
2 (a) U. Lu¨ning, Angew. Chem., Int. Ed., 2012, 51, 8163; (b) E. R. Kay,
D. A. Leigh and F. Zerbetto, Angew. Chem., Int. Ed., 2007, 46, 72;
(c) V. Blanco, D. A. Leigh and V. Marcos, Chem. Soc. Rev., 2015, 44, 5341.
18 (a) L. Ackermann, Chem. Rev., 2011, 111, 1315; (b) D. H. Ess,
R. J. Nielsen, W. A. Goddard III and R. A. Periana, J. Am. Chem.
Soc., 2009, 131, 11686.
´
3 (a) Y. H. Kim, Acc. Chem. Res., 2001, 34, 955; (b) M. Bartok, Chem.
Rev., 2010, 110, 1663; (c) J. Escorihuela, M. I. Burguete and S. V. Luis,
Chem. Soc. Rev., 2013, 42, 5595.
19 (a) J. Ito and H. Nishiyama, Eur. J. Inorg. Chem., 2007, 1114; (b) J. Ito,
T. Kaneda and H. Nishiyama, Organometallics, 2012, 31, 4442.
20 P. Scherl, H. Wadepohl and L. H. Gade, Organometallics, 2013,
32, 4409.
21 (a) T. Ohshima, T. Kawabata, Y. Takeuchi, T. Kakinuma, T. Iwasaki,
T. Yonezawa, H. Murakami, H. Nishiyama and K. Mashima, Angew.
Chem., Int. Ed., 2011, 50, 6296; (b) T. Wang, J.-L. Niu, S.-L. Liu,
J.-J. Huang, J.-F. Gong and M.-P. Song, Adv. Synth. Catal., 2013,
355, 927; (c) K. Morisaki, M. Sawa, R. Yonesaki, H. Morimoto,
K. Mashima and T. Ohshima, J. Am. Chem. Soc., 2016, 138, 6194.
22 J. Ito, M. Kitase and N. Nishiyama, Organometallics, 2007, 26, 6412.
23 Mechanistic studies of catalytic alkynylation of a-ketiminoesters
suggested that coordination of alkynes could be involved as the
turnover-limiting step.21c
4 (a) Y. Nagata, T. Kuroda, K. Takagia and M. Suginome, Chem. Sci.,
2014, 5, 4953; (b) M. Nagamoto, D. Yamauchi and T. Nishimura,
Chem. Commun., 2016, 52, 5876; (c) R. Doran, M. P. Carroll, R. Akula,
B. F. Hogan, M. Martins, S. Fanning and P. J. Guiry, Chem. – Eur. J.,
2014, 20, 15354; (d) T. Inagaki, A. Ito, J. Ito and H. Nishiyama, Angew.
Chem., Int. Ed., 2010, 49, 9384; (e) Y. Sohtome, S. Tanaka, K. Takada,
T. Yamaguchi and K. Nagasawa, Angew. Chem., Int. Ed., 2010,
¨
49, 9254; ( f ) A. Frolander and C. Moberg, Org. Lett., 2007, 9, 1371;
(g) H. Y. Kim, H.-J. Shih, W. E. Knabe and K. Oh, Angew. Chem., Int.
Ed., 2009, 48, 7420.
5 (a) J. Wang and B. L. Feringa, Science, 2011, 331, 1429; (b) D. Zhao,
T. M. Neubauer and B. L. Feringa, Nat. Commun., 2015, 6, 6652.
6 S. Mortezaei, N. R. Catarineu and J. W. Canary, J. Am. Chem. Soc.,
2012, 134, 8054.
12768 | Chem. Commun., 2019, 55, 12765--12768
This journal is ©The Royal Society of Chemistry 2019