Chemistry & Biology
Affinity Reagents for Inactive Protein Kinases
Jeffrey, P.D., Russo, A.A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., and
Pavletich, N.P. (1995). Mechanism of CDK activation revealed by the structure
of a cyclinA-CDK2 complex. Nature 376, 313–320.
Schroeder, G.M., An, Y.M., Cai, Z.W., Chen, X.T., Clark, C., Cornelius, L.A.M.,
Dai, J., Gullo-Brown, J., Gupta, A., Henley, B., et al. (2009). Discovery of
N-(4-(2-Amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluoro-
phenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a selective
and orally efficacious inhibitor of the Met kinase superfamily. J. Med. Chem.
52, 1251–1254.
Kannan, N., Taylor, S.S., Zhai, Y., Venter, J.C., and Manning, G. (2007). Struc-
tural and functional diversity of the microbial kinome. PLoS Biol. 5, e17.
Karaman, M.W., Herrgard, S., Treiber, D.K., Gallant, P., Atteridge, C.E., Camp-
bell, B.T., Chan, K.W., Ciceri, P., Davis, M.I., Edeen, P.T., et al. (2008). A quan-
titative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132.
Seeliger, M.A., Nagar, B., Frank, F., Cao, X., Henderson, M.N., and Kuriyan, J.
(2007). c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit
conformation and
299–311.
a distributed thermodynamic penalty. Structure 15,
Kornev, A.P., Haste, N.M., Taylor, S.S., and Eyck, L.F. (2006). Surface compar-
ison of active and inactive protein kinases identifies a conserved activation
mechanism. Proc. Natl. Acad. Sci. USA 103, 17783–17788.
Seeliger, M.A., Ranjitkar, P., Kasap, C., Shan, Y., Shaw, D.E., Shah, N.P., Kur-
iyan, J., and Maly, D.J. (2009). Equally potent inhibition of c-Src and Abl by
compounds that recognize inactive kinase conformations. Cancer Res. 69,
2384–2392.
Liu, Y., and Gray, N.S. (2006). Rational design of inhibitors that bind to inactive
kinase conformations. Nat. Chem. Biol. 2, 358–364.
Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002).
The protein kinase complement of the human genome. Science 298, 1912–
1934.
Simard, J.R., Getlik, M., Gru¨ tter, C., Pawar, V., Wulfert, S., Rabiller, M., and
Rauh, D. (2009a). Development of a fluorescent-tagged kinase assay system
for the detection and characterization of allosteric kinase inhibitors. J. Am.
Chem. Soc. 131, 13286–13296.
Mol, C.D., Dougan, D.R., Schneider, T.R., Skene, R.J., Kraus, M.L., Scheibe,
D.N., Snell, G.P., Zou, H., Sang, B.C., and Wilson, K.P. (2004). Structural basis
for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J. Biol.
Chem. 279, 31655–31663.
Simard, J.R., Kluter, S., Gru¨ tter, C., Getlik, M., Rabiller, M., Rode, H.B., and
Rauh, D. (2009b). A new screening assay for allosteric inhibitors of cSrc.
Nat. Chem. Biol. 5, 394–396.
Nagar, B., Bornmann, W.G., Pellicena, P., Schindler, T., Veach, D.R., Miller,
W.T., Clarkson, B., and Kuriyan, J. (2002). Crystal structures of the kinase
domain of c-Abl in complex with the small molecule inhibitors PD173955
and imatinib (STI-571). Cancer Res. 62, 4236–4243.
Sullivan, J.E., Holdgate, G.A., Campbell, D., Timms, D., Gerhardt, S., Breed, J.,
Breeze, A.L., Bermingham, A., Pauptit, R.A., Norman, R.A., et al. (2005).
Prevention of MKK6-dependent activation by binding to p38alpha MAP
kinase. Biochemistry 44, 16475–16490.
O’Hare, T., Shakespeare, W.C., Zhu, X., Eide, C.A., Rivera, V.M., Wang, F.,
Adrian, L.T., Zhou, T., Huang, W.S., Xu, Q., et al. (2009). AP24534, a pan-
BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I
mutant and overcomes mutation-based resistance. Cancer Cell 16, 401–412.
Taylor, S.S., Bubis, J., Toner-Webb, J., Saraswat, L.D., First, E.A., Buechler,
J.A., Knighton, D.R., and Sowadski, J. (1988). CAMP-dependent protein
kinase: prototype for a family of enzymes. FASEB J. 2, 2677–2685.
Okram, B., Nagle, A., Adrian, F.J., Lee, C., Ren, P., Wang, X., Sim, T., Xie, Y.,
Wang, X., Xia, G., et al. (2006). A general strategy for creating ‘‘inactive-confor-
mation’’ abl inhibitors. Chem. Biol. 13, 779–786.
Wan, P.T., Garnett, M.J., Roe, S.M., Lee, S., Niculescu-Duvaz, D., Good, V.M.,
Jones, C.M., Marshall, C.J., Springer, C.J., Barford, D., and Marais, R. (2004).
Mechanism of activation of the RAF-ERK signaling pathway by oncogenic
mutations of B-RAF. Cell 116, 855–867.
Pargellis, C., Tong, L., Churchill, L., Cirillo, P.F., Gilmore, T., Graham, A.G.,
Grob, P.M., Hickey, E.R., Moss, N., Pav, S., et al. (2002). Inhibition of p38
MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol. 9,
268–272.
Weisberg, E., Manley, P.W., Breitenstein, W., Bruggen, J., Cowan-Jacob,
S.W., Ray, A., Huntly, B., Fabbro, D., Fendrich, G., Hall-Meyers, E., et al.
(2005). Characterization of AMN107, a selective inhibitor of native and mutant
Bcr-Abl. Cancer Cell 7, 129–141.
Pellicena, P., and Kuriyan, J. (2006). Protein-protein interactions in the allo-
steric regulation of protein kinases. Curr. Opin. Struct. Biol. 16, 702–709.
Perera, B.G., and Maly, D.J. (2008). Design, synthesis and characterization of
Wissing, J., Jansch, L., Nimtz, M., Dieterich, G., Hornberger, R., Keri, G., Weh-
land, J., and Daub, H. (2007). Proteomics analysis of protein kinases by target
class-selective prefractionation and tandem mass spectrometry. Mol. Cell.
Proteomics 6, 537–547.
‘‘clickable’’ 4-anilinoquinazoline kinase inhibitors. Mol. Biosyst. 4, 542–550.
Quintas-Cardama, A., Kantarjian, H., and Cortes, J. (2007). Flying under
the radar: the new wave of BCR-ABL inhibitors. Nat. Rev. Drug Discov. 6,
834–848.
Schindler, T., Bornmann, W., Pellicena, P., Miller, W.T., Clarkson, B., and Kur-
iyan, J. (2000). Structural mechanism for STI-571 inhibition of abelson tyrosine
kinase. Science 289, 1938–1942.
Wong, L., Jennings, P.A., and Adams, J.A. (2004). Communication pathways
between the nucleotide pocket and distal regulatory sites in protein kinases.
Acc. Chem. Res. 37, 304–311.
206 Chemistry & Biology 17, 195–206, February 26, 2010 ª2010 Elsevier Ltd All rights reserved