8606 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 24
Kim et al.
quercetin concentration without effect on selected risk factors for
heart disease in healthy subjects. J. Nutr. 1998, 128, 593–597.
(2) Ohnishi, E.; Bannai, H. Quercetin potentiates TNF-induced anti-
viral activity. Antiviral Res. 1993, 22, 327–331.
(3) Davis, J. M.; Murphy, E. A.; McClellan, J. L.; Carmichael, M. D.;
Gangemi, J. D. Quercetin reduces susceptibility to influenza infec-
tion following stressful exercise. Am. J. Physiol.: Regul., Integr.
Comp. Physiol. 2008, 295, R505–R509.
(23) Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Structure-
antioxidant activity relationships of flavonoids and phenolic acids.
Free Radical Biol. Med. 1996, 20, 933–956.
(24) Yamamoto, N.; Moon, J. H.; Tsushida, T.; Nagao, A.; Terao, J.
Inhibitory effect of quercetin metabolites and their related deriva-
tives on copper ion-induced lipid peroxidation in human low-
density lipoprotein. Arch. Biochem. Biophys. 1999, 372, 347–354.
(25) Koga, T.; Meydani, M. Effect of plasma metabolites of (þ)-catechin
and quercetin on monocyte adhesion to human aortic endothelial
cells. Am. J. Clin. Nutr. 2001, 73, 941–948.
(26) Da Silva, E. L.; Tsushida, T.; Terao, J. Inhibition of mammalian
15-lipoxygenase-dependent lipid peroxidation in low-density lipo-
protein by quercetin and quercetin monoglucosides. Arch. Bio-
chem. Biophys. 1998, 349, 313–320.
(27) Cornish, K. M.; Williamson, G.; Sanderson, J. Quercetin metabo-
lism in the lens: role in inhibition of hydrogen peroxide induced
cataract. Free Radical Biol. Med. 2002, 33, 63–70.
(28) Van der Woude, H.; Boersma, M. G.; Vervoort, J.; Rietjens, I. M.
C. M. Identification of 14 quercetin phase II mono- and mixed
conjugates and their formation by rat and human phase II in vitro
model systems. Chem. Res. Toxicol. 2004, 17, 1520–1530.
(29) Day, A. J.; Bao, Y.; Morgan, M. R. A.; Williamson, G. Conjuga-
tion position of quercetin glucuronides and effect on biological
activity. Free Radical Biol. Med. 2000, 29, 1234–1243.
(30) Van Zanden, J. J.; Van der Woude, H.; Vaessen, J.; Usta, M.;
Wortelboer, H. M.; Cnubben, N. H. P.; Rietjens, I. M. C. M. The
effect of quercetin phase II metabolism on its MRP1 and MRP2
inhibiting potential. Biochem. Pharmacol. 2007, 74, 345–351.
(31) Biasutto, L.; Marotta, E.; De Marchi, U.; Zoratti, M.; Paradisi, C.
Ester-based precursors to increase the bioavailability of quercetin.
J. Med. Chem. 2007, 50, 241–253.
(32) Picq, M.; Prigent, A. F.; Nemoz, G.; Andre, A. C.; Pacheco, H.
Pentasubstituted quercetin analogs as selective inhibitors of parti-
culate 30,50-cyclic-AMP phosphodiesterase from rat brain. J. Med.
Chem. 1982, 25, 1192–1198.
(33) Iwase, Y.; Takemura, Y.; Ju-ichi, M.; Mukainaka, T.; Ichiishi, E.;
Ito, C.; Furukawa, H.; Yano, M.; Tokuda, H.; Nishino, H. Inhibi-
tory effect of flavonoid derivatives on Epstein-Barr virus activa-
tion and two-stage carcinogenesis of skin tumors. Cancer Lett.
2001, 173, 105–109.
(34) Kohli, E.; Raj, H. G.; Kumari, R.; Rohil, V.; Kaushik, N. K.;
Prasad, A. K.; Parmar, V. S. Comparison of the prevention of
aflatoxin B1-induced genotoxicity by quercetin and quercetin
pentaacetate. Bioorg. Med. Chem. Lett. 2002, 12, 2579–2582.
(35) Calias, P.; Galanopoulos, T.; Maxwell, M.; Khayat, A.; Graves,
D.; Antoniades, H. N.; d’Alarcao, M. Synthesis of inositol 2-phos-
phate-quercetin conjugates. Carbohyd. Res. 1996, 292, 83–90.
(36) Sardone, L.; Pignataro, B.; Castelli, F.; Sarpietro, M. G.; Nicolosi,
G.; Marletta, G. Temperature and pressure dependence of querce-
tin-3-O-palmitateinteractionwith a model phospholipid membrane:
film balance and scanning probe microscopy study. J. Colloid
Interface Sci. 2004, 271, 329–335.
(37) Saija, A.; Tomaino, A.; Trombetta, D.; Pellegrino, M. L.; Tita, B.;
Messina, C.; Bonina, F. P.; Rocco, C.; Nicolosi, G.; Castelli, F. In
vitro antioxidant and photoprotective properties and interaction
with model membranes of three new quercetin esters. Eur. J.
Pharm. Biopharm. 2003, 56, 167–174.
(38) Montenegro, L.; Carbone, C.; Maniscalco, C.; Lambusta, D.;
Nicolosi, G.; Ventura, C. A.; Puglisi, G. In vitro evaluation of
quercetin-3-O-acyl esters as topical prodrugs. Int. J. Pharm. 2007,
336, 257–262.
(39) Gatto, M. T.; Falcocchio, S.; Grippa, E.; Mazzanti, G.; Battinelli,
L.; Nicolosi, G.; Lambusta, D.; Saso, L. Antimicrobial and anti-
lipase activity of quercetin and its C2-C16 3-O-acyl-esters. Bioorg.
Med. Chem. 2002, 10, 269–272.
(4) Ferry, D. R.; Smith, A.; Malkhandi, J.; Fyfe, D. W.; deTakats,
P. G.; Anderson, D.; Baker, J.; Kerr, D. J. Phase I clinical trial of
the flavonoid quercetin: pharmacokinetics and evidence for in vivo
tyrosine kinase inhibition. Clin. Cancer Res. 1996, 2, 659–668.
(5) Boulton, D. W.; Walle, U. K.; Walle, T. Fate of the flavonoids
quercetin in human cell lines: chemical instability and metabolism.
J. Pharm. Pharmacol. 1999, 51, 353–359.
ꢀ
ꢀ
(6) Van der Woude, H.; Gliszczynska-Swigzo, A.; Struijs, K.; Smeets,
A.; Alink, G. M.; Rietjens, I. M. C. M. Biphasic modulation of cell
proliferation by quercetin at concentrations physiologically rele-
vant in humans. Cancer Lett. 2003, 200, 41–47.
(7) De Boer, V. C. J.; de Goffau, M. C.; Arts, I. C. W.; Hollman,
P. C. H.; Keijer, J. SIRT1 stimulation by polyphenols is affected
by their stability and metabolism. Mech. Ageing Dev. 2006, 127,
618–627.
(8) O’Leary, K. A.; Day, A. J.; Needs, P. W.; Mellon, F. A.; O’Brien,
N. M.; Williamson, G. Metabolism of quercetin-7- and quercetin-
3-glucuronides by an in vitro hepatic model: the role of human
β-glucuronidase, sulfotransferase, catechol-O-methyltransferase
and multi-resistant protein 2 (MRP2) in flavonoid metabolism.
Biochem. Pharmacol. 2003, 65, 479–491.
(9) Spencer, J. P.; Kuhnle, G. G.; Williams, R. J.; Rice-Evans, C.
Intracellular metabolism and bioactivity of quercetin and its in vivo
metabolites. Biochem. J. 2003, 372, 173–181.
ꢀ
ꢀ
(10) Van der Woude, H.; Gliszczynska-Swigzo, A.; Struijs, K.; Smeets,
A.; Alink, G. M.; Rietjens, I. M. C. M. Biphasic modulation of cell
proliferation by quercetin at concentrations physiologically rele-
vant in humans. Cancer Lett. 2003, 200, 41–47.
(11) Halliwell, B. Oxidative stress in cell culture: an under-appreciated
problem? FEBS Lett. 2003, 540, 3–6.
(12) Clement, M. V.; Jeyakumar, R.; Long, L. H.; Halliwell, B. The in
vitro cytotoxicity of ascorbate depends on the culture media used to
perform the assay and involves hydrogen peroxide. Antioxid.
Redox Signaling 2001, 3, 157–164.
(13) Halliwell, B.; Clement, M. V.; Ramalingam, J.; Long, L. H.
Hydrogen peroxide. Ubiquitous in cell culture and in vivo? IUBMB
Life 2000, 50, 251–257.
(14) Long, L. H.; Clement, M. V.; Halliwell, B. Artifacts in cell culture:
rapid generation of hydrogen peroxide on addition of (-)-epigal-
locatechin, (-)-epigallocatechin gallate, (þ)-catechin, and querce-
tin to commonly used cell culture media. Biochem. Biophys. Res.
Commun. 2000, 273, 50–53.
(15) Long, L. H.; Halliwell, B. Oxidation and generation of hydrogen
peroxide by thiol compounds in commonly used cell culture media.
Biochem. Biophys. Res. Commun. 2001, 286, 991–994.
(16) (a) Dangles, O.; Dufour, C.; Bret, S. Flavonol-serum albumin
complexation. Two-electron oxidation of flavonols and their com-
plexes with serum albumin. J. Chem. Soc., Perkin Trans. 2 1999,
737–744. (b) Dangles, O.; Fargeix, G.; Dufour, C. One-electron oxida-
tion of quercetin and quercetin derivatives in protic and non protic
media. J. Chem. Soc., Perkin Trans. 2 1999, 1387–1395.
€
(17) Viborg Jorgensen, L.; Cornett, C.; Justesen, U.; Skibsted, L. H.;
Dragsted, L. O. Two-electron electrochemical oxidation of quer-
cetin and kaempferol changes only the flavonoids C-ring. Free
Radical Res. 1998, 29, 339–350.
(18) Igarashi, K.; Komatsu, C.; Shimada, T. 2,5,7,30,40-Pentahydroxy-
flavan-3,4-dione as an intermediate product in the enzyme-cata-
lyzed oxidation of quercetin. Agric. Biol. Chem. 1991, 55, 855–857.
(19) Purev, O.; Pospisil, E. Metabolism of quercetin in cell suspension
culture of Nicotiana tabacum L. Biol. Plant. 1989, 31, 182–187.
(40) Mulholland, P. J.; Ferry, D. R.; Anderson, D.; Hussain, S. A.;
Young, A. M.; Cook, J. E.; Hodgkin, E.; Seymour, L. W.; Kerr,
D. J. Pre-clinical and clinical study of 1, a water-soluble, pro-drug
of quercetin. Ann. Oncol. 2001, 12, 245–248.
€
(20) Jungbluth, G.; Ruhling, I.; Ternes, W. Oxidation of flavonols with
Cu(II), Fe(II) and Fe(III) in aqueous media. J. Chem. Soc., Perkin
Trans. 2 2000, 1946–1952.
(41) Wu, C.; Cheng, L.; Li, Y.; Guo, D.; Yu, S.; Wu, X.; Wei, Y.
Syntheses of ammonium salts of 7-carbamate derivatives of quer-
cetin. Lett. Org. Chem. 2007, 4, 366–369.
(21) Zhou, A.; Kikandi, S.; Sadik, O. A. Electrochemical degradation of
quercetin: isolation and structural elucidation of the degradation
products. Electrochem. Commun. 2007, 9, 2246–2255.
(42) Kim, M. K.; Park, K. -S.; Yeo, W.-S.; Choo, H.; Chong, Y. In vitro
solubility, stability and permeability of novel quercetin-amino
acid conjugates. Bioorg. Med. Chem. 2009, 17, 1164–1171.
(43) Starrett, J. E., Jr.; Tortolani, D. R.; Russell, J.; Hitchcock,
M. J. M.; Whiterock, V.; Martin, J. C.; Mansuri, M. M. Synthesis,
oral bioavailability determination, and in vitro evaluation of
prodrugs of the antiviral agent 9-[2-(phosphonomethoxy)ethyl]-
adenine (PMEA). J. Med. Chem. 1994, 37, 1857–1864.
€
(22) (a) Braune, A.; Gutschow, M.; Engst, W.; Blaut, M. Degradation
of quercetin and luteolin by Eubacterium ramulus. Appl. Environ.
Microbiol. 2001, 67, 5558–5567. (b) Trouillas, P.; Marsal, P.; Siri, D.;
Lazzaroni, R.; Duroux, J.-L. A DFTstudy of the reactivity of OH groups
in quercetin and taxifolin antioxidants: the specificity of the 3-OH site.
Food Chem. 2006, 97, 679–688. (c) Kubo, I.; Nihei, K.-I.; Shimizu, K.
Oxidation products of quercetin catalyzed by mushroom tyrosinase.
Bioorg. Med. Chem. 2004, 12, 5343–5347.
(44) Serafinowska, H. T.; Ashton, R. J.; Bailey, S.; Harnden, M. R.;
Jackson, S. M.; Sutton, D. Synthesis and in vivo evaluation of