ARTICLES
25. Liu, W., Jiang, H. & Huang, L. One-pot silver-catalzyed and PIDA-mediated
sequential reactions: synthesis of polysubstituted pyrroles directly from
alkynoates and amines. Org. Lett. 12, 312–315 (2010).
26. Blanco-Urgoiti, J., Añorbe, L., Pérez-Serrano, L. & Domínguez, G. The
Pauson–Khand reaction, a powerful synthetic tool for the synthesis of
complex molecules. Chem. Soc. Rev. 33, 32–42 (2004).
27. Omae, I. Three characteristic reactions of alkynes with metal compounds in
organic synthesis. Appl. Organometal. Chem. 22, 149–166 (2008).
28. Chopade, P. R. & Louie, J. [2+2+2] cycloaddition reactions catalyzed by
transition metals. Adv. Synth. Catal. 348, 2307–2327 (2006).
29. Wender, P. A. et al. Inspirations from nature. New reactions, therapeutic leads,
and drug delivery systems. Pure Appl. Chem. 75, 143–155 (2003).
30. Hill, J. E., Fanwick, P. E. & Rothwell, I. P. Formation of a terminal aryl-imido
compound of titanium by cleavage of the N=N double bond in benzo[c]
cinnoline. Inorg. Chem. 30, 1143–1144 (1991).
31. Tonks, I. A., Meier, J. C. & Bercaw, J. E. Titanium complexes supported by
pyridine-bis(phenolate) ligands: active catalysts for intermolecular
hydroamination or trimerization of alkynes. Organometallics 32,
3451–3457 (2013).
32. Vujokvic, N. et al. Imido-alkyne coupling in titanium complexes: new
insight into the alkyne hydroamination reaction. Organometallics 26,
5522–5534 (2007).
33. Lokare, K. S., Ciszewski, J. T. & Odom, A. L. Group-6 imido activation by a ring-
strained alkyne. Organometallics 23, 5386–5388 (2004).
34. Fout, A. R., Kilgore, U. J. & Mindiola, D. J. The recent progression of synthetic
strategies to assemble titanium complexes bearing the terminal imide group.
Chem. Eur. J. 13, 9428–9440 (2007).
35. Duchateau, R., Williams, A. J., Gambarotta, S. & Chiang, M. Y. Carbon-carbon
double-bond formation in the intermolecular acetonitrile reductive coupling
promoted by a mononuclear titanium(II) compound. Preparation and
characterization of two titanium(IV) imido derivatives. Inorg. Chem. 30,
4863–4866 (1991).
44. Tripepi, G., Young, V. G. Jr & Ellis, J. E. Highly reduced organometallics Part 49.
Reaction of hexacarbonyltitanate(2–) with azobenzene. Structural
characterization of the first hydroxo-carbonyl of titanium [Ti2(μ-OH)2(CO)8]2−
J. Organomet. Chem. 593–594, 354–360 (2000).
.
45. Kaleta, K., Arndt, P., Spannenberg, A. & Rosenthal, U. Unusual bond activation
processes in the reaction of group 4 cyclopentadienyl alkyne complexes with
azobenzene. Inorg. Chim. Acta 370, 187–190 (2011).
46. Kaleta, K. et al. Reactions of group 4 metallocene alkyne complexes with
azobenzene: formation of diazametallacyclopropanes and N=N bond activation.
Organometallics 29, 2604–2609 (2010).
47. Retbøll, M. & Jørgensen, K. A. MO explanation of the structures of azo-
transition metal complexes. Inorg. Chem. 33, 6403–6405 (1994).
48. Goetze, B., Knizek, J., Noth, H. & Schnick, W. 1,2-Bis(trimethylsilyl)hydrazido
titanium complexes. Eur. J. Inorg. Chem. 1849–1854 (2000).
49. Munhá, R. F., Zarkesh, R. A. & Heyduk, A. F. Group transfer reactions of d0
transition metal complexes: redox-active ligands provide a mechanism for
expanded reactivity. Dalton Trans. 42, 3751–3766 (2013).
50. Zarkesh, R. A., Ziller, J. W. & Heyduk, A. F. Four-electron oxidative formation of
aryl diazenes using a tantalum redox-active ligand complex. Angew. Chem. Int.
Ed. 47, 4715–4718 (2008).
51. Mankad, N. P., Müller, P. & Peters, J. C. Catalytic N–N coupling of aryl azides to
yield azoarenes via trigonal bipyramid iron–nitrene intermediates. J. Am. Chem.
Soc. 132, 4083–4085 (2010).
52. Mansuy, D., Battioni, P. & Mahy, J. P. Isolation of an iron–nitrene complex from
dioxygen- and iron poryhrin-dependent oxidation of a hydrazine. J. Am. Chem.
Soc. 104, 4487–4489 (1982).
53. Gräbe, K., Pohlki, F. & Doye, S. Neutral Ti complexes as catalysts for the
hydroamination of alkynes and alkenes: do the labile ligands change the catalytic
activity? Eur. J. Org. Chem. 28, 4815–4823 (2008).
54. Hicks, F. & Buchwald, S. L. Highly-enantioselective catalytic Pauson–Khand
type formation of bicyclic cyclopentenones. J. Am. Chem. Soc. 118,
11688–11689 (1996).
55. Yim, J. C. H., Bexrud, J. A., Ayinla, R. O., Leitch, D. C. & Schafer, L. L.
Bis(amidate)bis(amido) titanium complex: a regioselective intermolecular
alkyne hydroamination catalyst. J. Org. Chem. 79, 2015–2028 (2014).
36. Gray, S. D., Thorman, J. L., Adamian, V. A., Kadish, K. M. & Woo, L. K.
Synthesis, electrochemistry, and imido and transfer reactions of (TTP)Ti(η2-
PhN=NPh). Inorg. Chem. 37, 1–4 (1998).
37. Hill, B. J. E., Profile, R. D., Fanwick, P. E. & Rothwell, Z. P. Synthesis, structure,
and reactivity of aryloxo(imido)titanium complexes. Angew. Chem. Int. Ed. Engl.
102, 664–665 (1990).
38. Adams, N. et al. New titanium imido synthons: syntheses and supramolecular
structures. Inorg. Chem. 44, 2882–2894 (2005).
39. Blake, A. J. et al. Synthesis and imido-group exchange reactions of
tert-butylimidotitanium complexes. J. Chem. Soc. Dalton Trans.
1549–1558 (1997).
Acknowledgements
Financial support was provided by the University of Minnesota (start-up funds).
Equipment purchases for the Chemistry Department NMR facility were supported by a
grant from the National Institutes of Health (S10OD011952) with matching funds from the
University of Minnesota. The Bruker-AXS D8 Venture diffractometer was purchased
through a grant from NSF/MRI (1224900) and the University of Minnesota.
Author contributions
40. Vujkovic, N. et al. Insertions into azatitanacyclobutenes: new insights into three-
component coupling raections involving imidotitanium intermediates.
Organometallics 27, 2518–2528 (2008).
41. Straub, B. F. & Bergman, R. G. The mechanism of hydroamination of
allenes, alkynes, and alkenes catalyzed by cyclopentadienyltitanium–imido
complexes: a density functional study. Angew. Chem. Int. Ed. 40,
4632–4635 (2001).
42. Weitershaus, K. et al. Titanium hydroamination catalysts bearing a
2-aminopyrrolinto spectator ligand: monitoring the individual reaction steps.
Dalton Trans. 4586–4602 (2009).
Z.W.G. and I.A.T. conceived and designed the experiments. Z.W.G. and R.J.H. performed
the experiments and analysed the data. I.A.T. wrote the manuscript. All authors
contributed to revising the manuscript.
Additional information
Supplementary information and chemical compound information are available in the
online version of the paper. Reprints and permissions information is available online at
addressed to I.A.T.
43. Barnea, E., Majumder, S., Staples, R. J. & Odom, A. L. One step route to
2,3-diaminopyrroles using a titanium-catalyzed four-component coupling.
Organometallics 28, 3876–3881 (2009).
Competing financial interests
The authors declare no competing financial interests.
6
© 2015 Macmillan Publishers Limited. All rights reserved