of enecarbamates3g,h and our ongoing project on catalytic
asymmetric synthesis,15 we were interested in examining a
chiral phosphoric acid-catalyzed amination of enamides using
azodicarboxylate as an electrophilic partner.
to provide an asymmetric environment for the desired
enantioselective amination process (Scheme 1).
Chiral BINOL-derived phosphoric acids, pioneered by
Akiyama et al. and Terada et al., are now well-established
bifunctional organocatalysts that are particularly effective
in catalyzing the addition of nucleophiles to imines.16,17
Therefore, we reasoned that chiral phosphoric acids might
be able to activate both enamides 1 and azodicarboxylates 2
Scheme 1. Catalytic Enantioselective R-Amination of Enamides
(4) For selected examples with aldehydes and ketones as electrophiles,
see: (a) Matsubara, R.; Nakamura, Y.; Kobayashi, S. Angew. Chem., Int.
Ed. 2004, 43, 3258. (b) Fossey, J. S.; Matsubara, R.; Vital, P.; Kobayashi,
S. Org. Biomol. Chem. 2005, 3, 2910. (c) Matsubara, R.; Kawai, N.;
Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45, 3814. (d) Terada, M.; Soga,
K.; Momiyama, N. Angew. Chem., Int. Ed. 2008, 47, 4122. (e) Yang, L.;
Wang, D.-X.; Huang, Z.-T.; Wang, M. X. J. Am. Chem. Soc. 2009, 131,
10390.
To validate our hypothesis, we initially examined the
reaction of (E)-N-(1-phenylprop-1-en-1-yl)acetamide (1a)
with diisopropyl azodicarboxylate (2a) in the presence of
10 mol % of chiral phosphoric acid 3a in DCM at -35 °C.
This resulted in the formation of the desired 1,2-hydrazi-
noimine 4a, accompanied by the 1,2-hydrazinoketone 5a.
Although addition of molecular sieves in the reaction
prevented the hydrolysis of the unstable N-acylimine 4a, the
enantioselectivities and yields were determined for compound
5a, obtained by in situ hydrolysis of 4a under acidic
conditions (EtOH and 33% HBr in AcOH, v/v ) 1/10).
Phosphoric acids with different steric environment (3a-f,
Figure 1) were next examined. It was found that the less
(5) For selected examples with Michael acceptors as electrophiles, see:
(a) Berthiol, F.; Matsubara, R.; Kawai, N.; Kobayashi, S. Angew. Chem.,
Int. Ed. 2007, 46, 7803. (b) Hayashi, Y.; Gotoh, H.; Masui, R.; Ishikawa,
H. Angew. Chem., Int. Ed. 2010, 47, 4012. (c) Zu, L.; Xie, H.; Li, H.;
Wang, J.; Yu, X.; Wang, W. Chem.sEur. J. 2008, 14, 6333.
(6) Guo, Q.-X.; Peng, Y.-G.; Zhang, J.-W.; Song, L.; Feng, Z.; Gong,
L.-Z. Org. Lett. 2009, 11, 4620.
(7) For selected pioneering work on asymetric R-amination using
azodicarboxylate as electrophilic nitrogen, see: Evans, D. A.; Nelson, S. G.
J. Am. Chem. Soc. 1997, 119, 6452.
(8) For general reviews of R-amination, see: (a) Bøgevig, A.; Juhl, K.;
Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K. A. Angew. Chem., Int.
Ed. 2002, 41, 1790. (b) Erdik, E. Tetrahedron 2004, 60, 8747. (c) Greck,
C.; Drouillat, B.; Thomassigny, C. Eur. J. Org. Chem. 2004, 1377. (d)
Marigo, M.; Jørgensen, K. A. Chem. Commun. 2006, 2001. (e) Na´jera, C.;
Sansano, J. M. Chem. ReV. 2007, 107, 4584. (f) Vilaivan, T.; Bhanthmnavin,
W. Molecules 2010, 15, 917.
(9) For selected reviews on enamine catalysis, see: (a) Dalko, P. I.
EnantioselectiVe Organocatalysis; Wiley-VCH: Weinheim, 2007. (b)
Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. ReV. 2007, 107,
5471. (c) MacMillan, D. W. C. Nature 2008, 455, 304. (d) Melchiorre, P.;
Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138.
(e) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. ReV. 2009, 38, 2178.
(10) For selected examples of proline-catalyzed R-amination of aldehydes
and ketones with dialkylazodicarboxylate, see: (a) List, B. J. Am. Chem.
Soc. 2002, 124, 5656. (b) Kumaragurubaran, N.; Juhl, K.; Zhuang, W.;
Bøgevig, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2002, 124, 6254. (c) Vogt,
H.; Vanderheriden, S.; Bro¨se, S. Chem. Commun. 2003, 2448. (d) Chowdari,
N. S.; Ramachary, D. B.; Barbas, C. F., III Org. Lett. 2003, 5, 1685. (e)
Dahlin, N.; Bøgevig, A.; Adolfsson, H. AdV. Synth. Catal. 2004, 346, 1101.
(f) Suri, J. T.; Steiner, D.; Barbas, C. F., III Org. Lett. 2005, 7, 3885. (g)
Franze´n, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T.; Kjærsgaard, A.;
Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296. (h) Baumann, T.;
Vogt, H.; Bra¨se, S. Eur. J. Org. Chem. 2007, 266. (i) Kotkar, S. P.; Chavan,
V. B.; Sudalai, A. Org. Lett. 2007, 9, 1001. (j) Dine´r, P.; Kjærsgaard, A.;
Lie, M. A.; Jørgensen, K. A. Chem.sEur. J. 2008, 14, 122. (k) Hayashi,
Y.; Aratake, S.; Imai, Y.; Hibino, K.; Chen, Q.-Y.; Yamaguchi, J.; Uchimaru,
T. Chem. Asian J. 2008, 3, 225. (l) Baumann, T.; Ba¨chle, M.; Hartmann,
C.; Bra¨se, S. Eur. J. Org. Chem. 2008, 2207. (m) Liu, P.-M.; Magar, D. R.;
Chen, K. Eur. J. Org. Chem. 2010, 5705.
Figure 1. List of phosphoric acids examined.
hindered phosphoric acid 3a was the most effective in terms
of both yield and ee of the product (entries 2-7, Table 1).
During this study we noticed that enantioselectivities (from
78% to 89%) and yields (from 45% to quantitative) under
the optimal conditions varied considerably depending on the
batch of 3a used. Following Ding’s observation,18 3a washed
with HCl was used as catalyst that led indeed to the
(11) For selected examples of Cinchona-catalyzed R-amination of
ketones with dialkylazodicarboxylate, see: Liu, T.-Y.; Cui, H.-L.; Zhang,
Y.; Jiang, K.; Du, W.; He, Z.-Q.; Chen, Y. C. Org. Lett. 2007, 9, 3671.
(12) Matsubara, R.; Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45,
7993.
(13) Chang, L.; Kuang, Y.; Qin, B.; Zhou, X.; Liu, X.; Lin, L.; Feng,
X. Org. Lett. 2010, 12, 2214.
(14) During preparation of this manuscript, Zhong reported a chiral
phosphoric acid-catalyzed asymmetric R-aminoxylation of enecarbamates;
see: Lu, M.; Lu, Y.; Zhu, D.; Zeng, X.; Li, X.; Zhong, G. Angew. Chem.,
Int. Ed. 2010, 49, 8588.
(16) For recent reviews on chiral phosphoric acid catalysis, see: (a)
Akiyama, T.; Itoh, J.; Fuchibe, K. AdV. Synth. Catal. 2006, 348, 999. (b)
Akiyama, T. Chem. ReV. 2007, 107, 5744. (c) Terada, M. Chem. Commun.
2008, 4097. (d) Terada, M. Synthesis 2010, 1929.
(15) (a) Wang, S.-X.; Wang, M.-X.; Wang, D.-X.; Zhu, J. Org. Lett.
2007, 9, 3615. (b) Wang, S.-X.; Wang, M.-X.; Wang, D.-X.; Zhu, J. Eur.
J. Org. Chem. 2007, 4076. (c) Wang, S.-X.; Wang, M.-X.; Wang, D.-X.;
Zhu, J. Angew. Chem., Int. Ed. 2008, 47, 388. (d) Yue, T.; Wang, M.-X.;
Wang, D.-X.; Zhu, J. Angew. Chem., Int. Ed. 2008, 47, 9554. (e) Yue, T.;
Wang, M.-X.; Wang, D.-X.; Masson, G.; Zhu, J. Angew. Chem., Int. Ed.
2009, 48, 6717.
(17) For recent reviews on Brønsted acid catalysis, see: (a) Doyle, A. G.;
Jacobsen, E. N. Chem. ReV. 2007, 107, 5713. (b) Yu, X.; Wang, W. Chem.
Asian J. 2008, 3, 516. (c) Kampen, D.; Reisinger, C. M.; List, B. Top.
Curr. Chem. 2010, 291, 395.
(18) Xu, S.; Wang, Z.; Zhang, X.; Zhang, X.; Ding, K. Angew. Chem.,
Int. Ed. 2008, 47, 2840.
Org. Lett., Vol. 13, No. 1, 2011
95