6188
D. Coffinier et al. / Tetrahedron Letters 51 (2010) 6186–6188
5. McNab, H.; Murray, E. A. J. Chem. Soc., Chem. Commun. 1981, 722; McNab, H.;
Murray, E. A. J. Chem. Soc., Perkin Trans. 1 1989, 583; Machaeek, V.; Eegan, A.;
Halama, A.; Rozoavska, O.; Sirba, V. Collect. Czech. Chem. Commun. 1995, 60,
1367.
dimethyl or diethyl acetylenedicarboxylate. The yields were lower
than those obtained with pyrrolidines. The reaction seems to be
limited to the use of cyclic amines as shown by the behavior of
2e which gave a complex mixture when treated with the alkyne.
In conclusion, we have developed a new pyridine synthesis
6. For a related access to pyridines by a [4+2] cycloaddition of
a,b-unsaturated
hydrazones see: Dolle, R. E.; Armstrong, W. P.; Shaw, A. N.; Novelli, R.
Tetrahedron Lett. 1988, 29, 6349–6352.
7. Typical procedure for 3d: To a solution of 100 mg of hydrazone 1b (0.5 mmol) in
from
a
-ketohydrazones.7 Improved access to this heterocyclic
1 mL of dry toluene was added 40
mixture was stirred at 100 °C for 2 h. Then, 160
carboxylate (1 mmol, 2.0 equiv) and 18 of N-ethyldiisopropylamine
l
l of pyrrolidine (0.5 mmol, 1.0 equiv) and the
family is important as pyridines display important biological
activities.8 This reaction involves the formation of intermediate
azoenamines whose reactivity has been poorly studied. Even if
the final yields are moderate, this synthesis is of interest as the
procedure is very simple and the starting hydrazones are readily
prepared using the Japp–Klingemann reaction between b-keto
acids and diazonium salts.9
l
l of diethyl acetylenedi-
ll
(0.1 mmol, 0.2 equiv) were added, and the mixture was further heated at
100 °C for 24 h. Flash chromatography on silica gel (Et2O/petroleum ether,
50:50) gave the desired product 3d as a yellow oil (66 mg, 40%). 1H NMR
(400 MHz, CDCl3) d 8.22 (s, 1H), 6.00 (tdd, J = 6.6, 10.1, 16.7 Hz, 1H), 5.12–5.04
(m, 2H), 4.39–4.28 (m, 4H), 3.58 (d, J = 6.6, 4H), 2.00–1.95 (m, 4H), 1.38 (t,
J = 7.1 Hz, 3H), 1.37 (t, J = 7.1 Hz, 3H). 13C NMR (100.6 MHz, CDCl3) d 168.1,
167.9, 143.7, 139.8, 138.2, 136.3, 127.0, 122.8, 116.5, 62.4, 62.2, 50.2, 40.1, 26.2,
14.5, 14.4. IR (thin film) 2985, 1729, 1569, 1472, 1464, 1410, 1376, 1275 cmÀ1
.
Acknowledgements
HRMS calcd for C18H24N2O4: 332.1736, found: 332.1737. Typical procedure for
3e: To a solution of 320 mg of hydrazone 1a (2 mmol) in 2 mL of dry toluene at
0 °C were added AlMe3 (1 ml, 2 mmol, 1 equiv as a 2 M solution in toluene) then
D.C. thanks GlaxoSmithKline and the Centre National pour la
Recherche Scientifique for a fellowship. The financial support was
provided by ENSTA.
morpholine (190 ll, 2.2 mmol, 1.1 equiv). The mixture was heated at 100 °C
under an argon atmosphere for 24 h. The addition at room temperature of a
saturated solution of sodium tartrate, followed by stirring for 15 min afforded,
after extraction (CH2Cl2), crude 2c which was further reacted with
diethylacetylene dicarboxylate as for 3b. Flash chromatography on silica gel
(Et2O/petroleum ether, 60:40) afforded the desired product 3e as a yellow oil
(230 mg, 38%). 1H NMR (400 MHz, CDCl3) d 9.01 (s, 1H), 8.67 (s, 1H), 4.47 (q,
7.1 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 3.85–3.80 (m, 4H), 3.13–3.10 (m, 4H), 1.44 (t,
J = 7.1 Hz, 3H), 1.41 (t, J = 7.1 Hz, 3H). 13C NMR (100.6 MHz, CDCl3) d 167.0,
164.5, 148.2, 147.3, 145.4, 140.3, 123.5, 67.6, 62.4, 62.3, 53.5, 14.6, 14.5. IR (thin
film) 2985, 1726, 1595, 1577, 1472, 1452, 1419, 1368, 1275 cmÀ1. HRMS calcd
for C15H20N2O5: 308.1372, found: 308.1370.
References and notes
1. Kitaev, Y. P.; Buzykin, B. I. Russ. Chem. Rev. 1972, 41, 495–515; Robinson, B.
The Fischer Indole Synthesis; John Wiley & Sons: Chichester, 1982; Patai, S..
In Hydrazo, Azo and Azoxy Groups; John Wiley
& Sons: Chichester, 1975;
Vols. 1 and 2.
2. Burk, M. J. J. Am. Chem. Soc. 1991, 113, 8518; Enders, D.; Reinhold, U. Tetrahedron:
Asymmetry 1997, 8, 1895; Manabe, K.; Oyamada, H.; Sugita, K.; Kobayashi, S. J.
Org. Chem. 1999, 64, 8054–8057; Friestad, G. K.; Ding, H. Angew. Chem., Int. Ed.
2001, 40, 4491; Herrera, R. P.; Monge, D.; Martin-Zamora, E.; Fernandez, R.;
Lassaleta, J. M. Org. Lett. 2007, 9, 3303–3306.
3. Atlan, V.; Bienaymé, H.; El Kaim, L.; Majee, A. Chem. Commun. 2000, 1585–1586;
El Kaim, L.; Gaultier, L.; Grimaud, L.; Harwood, L. M.; Michaut, V. Green Chem.
2003, 5, 477–479.
8. Chu, G.-H.; Saeui, C. T.; Worm, K.; Weaver, D. G.; Goodman, A. J.; Broadrup, R. L.;
Cassel, J. A.; DeHaven, R. N.; Labuda, C. J.; Koblish, M.; Brogdon, B.; Smith, S.; Le
Bourdonnec, B.; Dolle, R. E. Bioorg. Med. Chem. Lett. 2009, 19, 5931–5935; Wilson,
K. J.; Van Niel, M. B.; Cooper, L.; Bloomfield, D.; O’Connor, D.; Fish, L. R.;
MacLeod, A. M. Bioorg. Med. Chem. Lett. 2007, 17, 2643–2648; Saitton, S.; Del
Tredici, A. L.; Mohell, N.; Vollinga, R. C.; Boström, D.; Kihlberg, J.; Luthman, K. J.
Med. Chem. 2004, 47, 6595–6602; Reddy, T. R. K.; Mutter, R.; Heal, W.; Guo, K.;
Gillet, V. J.; Pratt, S.; Chen, B. J. Med. Chem. 2006, 49, 607–615.
4. Atlan, V.; El Kaim, L.; Grimaud, L.; Jana, N. K. Synlett 2002, 352–354; Baillez, V.;
El Kaim, L.; Michaut, V. Synth. Commun. 2004, 34, 109–118.
9. Japp, F. R.; Klingemann, F. Chem. Ber. 1887, 20, 2492.