M.K. Paira et al. / Polyhedron 29 (2010) 3147–3156
3155
[4] P. Ge, B.S. Haggerty, A.L. Rheingold, C.G. Riordan, J. Am. Chem. Soc. 116 (1994)
8406.
[5] A.J. Barton, J. Connolly, W. Levason, A. Mendia-Jalon, S.D. Orchard, G. Reid,
Polyhedron 19 (2000) 1373.
[6] P.L. Holland, W.B. Tolman, J. Am. Chem. Soc. 122 (2000) 6331.
[7] J.A. Graden, M.C. Posewitz, J.R. Simon, G.N. George, I.J. Pickering, D.R. Winge,
Biochemistry 35 (1996) 14583.
[8] D.A. Robb, in: R. Lontie (Ed.), Copper Proteins and Copper Enzymes, vol. 2, CRC
Press, Bocaraton, 1984, p. 207.
[9] K.D. Karlin, Z, Tyeklar. Bioinorganic Chemistry of Copper. Chapmann & Hall,
New York, 1993.
[10] W. Kaim, B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the
Chemistry of Life, John Wiley & Sons, Chichester-New York-Brisbane-Toronto-
Singapore, 1994. pp. 22 and 196.
[11] P.M. Bush, J.P. Whitehead, C.C. Pink, E.C. Gramm, J.L. Eglin, S.P. Watton, L.E.
Pence, Inorg. Chem. 40 (2001) 1871.
[12] E.I. Solomon, P. Chen, M. Metz, S.-K. Lee, A.E. Palmer, Angew. Chem., Int. Ed. 40
(2001) 4570.
(Cu) function in the SOMO/HOMO-1, the observed oxidation is cor-
rectly ascribed to the Cu(II)/Cu(I) redox couple. Unoccupied MOs
are significantly dominated by the ligand function (>95%), thus
reduction may refer to electron accommodation at the azo domi-
nated orbital of the ligand. So the assignment of azo reductions
is justified.
The spin density calculation has explained the degree of delo-
calization of the unpaired electron over the metal centres in the
bridged Cu–X–Cu unit. The coordinating atoms of the ligand partic-
ipate in the singly occupied molecular orbital (SOMO), which leads
to the enhancement of the electron density of the donor atoms.
Interestingly, the spin density is mainly distributed amongst the
copper dx2
magnetic orbital and the Cl/NCS bridging between
ꢀy2
two Cu centres (Cu(1)ꢃ ꢃ ꢃCu(2)) in the dinuclear entity. It is to be
noted that the calculated exchange coupling constant gives an
antiferromagnetic interaction (J) ꢀ0.14 cmꢀ1 (1a) and 18.65 cmꢀ1
(2b). The overlap between the magnetic orbitals of the copper
[13] R. Balamurugan, M. Palaniandavar, S.R. Gopalan, G.U. Kulkarni, Inorg. Chim.
Acta 357 (2004) 919.
[14] M. Vidyanathan, R. Balamurugan, U. Sivagnanam, M. Palaniandavar, J. Chem.
Soc., Dalton Trans. (2001) 3498 (and references cited therein).
[15] B.C. Westerby, K.L. Juntunen, G.H. Leggett, V.B. Pett, M.J. Koenigbauer, M.D.
Purgett, M.J. Taschner, L.A. Ochrymowycz, D.B. Rorabacher, Inorg. Chem. 30
(1991) 2109.
[16] K.K. Nanda, A.W. Addison, R.J. Butcher, M.R. McDevitt, T.N. Rao, E. Sinn, Inorg.
Chem. 36 (1997) 134.
[17] S. Torelli, C. Belle, C. Philouze, J.-L. Pierre, W. Rammal, E. Saint-Aman, Eur. J.
Inorg. Chem. (2003) 2452.
atoms is taking place via the bonding between the dx2
magnetic
ꢀy2
orbital of copper and the hybrid orbital of the bridging atom. Thus,
the spin delocalization on the bridging group corroborates the anti-
ferromagnetic interaction. The calculated spin density (Fig. 6) on
the bridging atoms is much higher in 2b than 1a and may explain
the high degree of delocalization in the –SCN-bridged complex (2b)
than the Cl- (1a) bridged compound.
[18] E.A. Ambundo, L.A. Ochrymowycz, D.B. Rorabacher, Inorg. Chem. 40 (2001)
5133.
[19] L.Q. Hatcher, D.-H. Lee, M.A. Vance, A.E. Milligan, R. Sarangi, K.O. Hodgson, B.
Hedman, E.I. Solomon, K.D. Karlin, Inorg. Chem. 45 (2006) 10055.
[20] P.J. Blower, J.S. Lewis, J. Zweit, Nucl. Med. Biol. 23 (1996) 957.
[21] A.R. Cowley, J.R. Dilworth, P.S. Donnelly, E. Labisbal, A. Sousa, J. Am. Chem. Soc.
124 (2002) 5270.
4. Conclusion
[22] S. Dhar, P.A.N. Reddy, M. Nethaji, S. Mahadevan, M.K. Saha, A.R. Chakravorty,
Inorg. Chem. 41 (2002) 3469.
[23] S. Dhar, D. Senapati, P.K. Das, P. Chattopadhyay, M. Nethaji, A.R. Chakravarty, J.
Am. Chem. Soc. 125 (2003) 12118.
[24] O. Kahn, Molecular Magnetism, VCH, New York, 1993.
[25] O. Kahn, Acc. Chem. Res. 33 (2000) 647;
3-(2-(Alkylthio)-2-phenylazo)-2,4-pentanedione (HL) coordi-
nates to Cu(II) as an O, N, S, donor ligand and generates a Cl-
bridged polymer or a –SCN-bridged dimer. Electrochemistry shows
a quasireversible Cu(II)/Cu(I) redox couple along with a Cu(I)/Cu(0)
response. The solution spectra show a high intense metal-to-azo-
imine charge transfer. The complexes show antiferromagnetic cou-
pling with J = ꢀ0.5 0.1 cmꢀ1 for Cl-bridging (1a) and ꢀ25.8
0.5 cmꢀ1 for –SCN-bridging (2b). A higher degree of delocalization
in the –SCN-bridged dimer than the Cl-bridged polymer may be ex-
plained by spin density calculation using optimized geometries of
the complexes. The spectra, magnetism and redox properties are
explained using DFT computation on the optimized geometries.
(b) M. Verdaguer, Polyhedron 20 (2001) 1115;
(c) D. Gatteschi, R. Sessoli, Angew. Chem., Int. Ed. 42 (2003) 268;
(d) H. Oshio, M. Nakano, Chem. Eur. J. 11 (2005) 5178;
(e) J.S. Miller, J. Chem. Soc., Dalton Trans. (2006) 2742.
[26] J. Ribas, A. Escuer, M. Monfort, R. Vicente, R. Cortés, L. Lezama, T. Rojo, Coord.
Chem. Rev. 193–195 (1999) 1027;
(b) M. Ohba, H. Õkawa, Coord. Chem. Rev. 198 (2000) 313;
(c) J.S. Miller, J.L. Manson, Acc. Chem. Res. 34 (2001) 563;
(d) L.M.C. Beltran, J.R. Long, Acc. Chem. Res. 38 (2005) 325;
(e) R. Lescouëzec, L.M. Toma, J. Vaissermann, M. Verdaguer, F.S. Delgado, C.
Ruiz-Pérez, F. Lloret, M. Julve, Coord. Chem. Rev. 249 (2005) 2691.
[27] R. Mukherjee, Coord. Chem. Rev. 203 (2000) 151;
(b) R. Mukherjee, in: J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive
Coordination Chemistry-II: From Biology to Nanotechnology, vol. 6, Elsevier
Pergamon, Amsterdam, 2004, pp. 747–910;
(c) S. Mandal, F. Lloret, R. Mukherjee, Inorg. Chim. Acta 362 (2009) 27.
[28] D.J. Hodgson, Prog. Inorg. Chem. 19 (1976) 173;
(b) S.G.N. Roundhill, D.M. Roundhill, D.R. Bloomquist, C. Landee, R.D. Willett,
D.M. Dooley, H.B. Gray, Inorg. Chem. 18 (1979) 831;
(c) W.E. Marsh, W.E. Hatfield, D.J. Hodgson, Inorg. Chem. 21 (1982) 2679;
(d) W.E. Marsh, D.S. Eggleston, W.E. Hatfield, D.J. Hodgson, Inorg. Chim. Acta
70 (1983) 137;
Acknowledgements
Financial support from the CAS program, University Grants
Commission and Department of Science & Technology, New Delhi
are gratefully acknowledged. One of us, MP, thanks CSIR for a fel-
lowship. J.R. acknowledges the financial support from the Spanish
Government (Grant CTQ2006/03949).
(e) W.E. Marsh, K.C. Patel, W.E. Hatfield, D.J. Hodgson, Inorg. Chem. 22 (1983)
511;
Appendix A. Supplementary material
(f) C.P. Landee, R.E. Greeney, Inorg. Chem. 25 (1986) 3771;
(g) T. Rojo, M.I. Arriortua, J. Ruiz, J. Darriet, G. Villeneuve, D. Beltran-Porter, J.
Chem. Soc., Dalton Trans. (1987) 285;
(h) F. Tuna, L. Patron, Y. Journaux, M. Andruh, W. Plass, J.-C. Trombe, J. Chem.
Soc., Dalton Trans. (1999) 539;
(i) M. Rodriguez, A. Llobet, M. Corbella, A.E. Martell, J. Reibenspies, Inorg.
Chem. 38 (1999) 2328;
(j) M. Rodriguez, A. Llobet, M. Corbella, Polyhedron 19 (2000) 2483;
(k) P. Kapoor, A. Pathak, R. Kapoor, P. Venugopalan, M. Corbella, M. Rodriguez,
J. Robles, A. Llobet, Inorg. Chem. 41 (2002) 6153;
CCDC 753060 and 753061 contain the supplementary crystallo-
graphic data for [Cu(L1)Cl]n (1a) and [Cu(L1)Cl]n (1a). These data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223
336 033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data
associated with this article can be found, in the online version, at
(l) P. DeHoog, P. Gamez, O. Roubeau, M. Lutz, W.L. Driessen, A.L. Spek, J.
Reedijk, New J. Chem. 27 (2003) 18;
(m) W.A. Alves, R.H. de Almeida Santos, A. Paduan-Filho, C.C. Becerra, A.C.
Borin, A.M. Da Costa Ferreira, Inorg. Chim. Acta 357 (2004) 2269;
(n) S.-L. Ma, X.-X. Sun, S. Gao, C.-M. Qi, H.-B. Huang, W.-X. Zhu, Eur. J. Inorg.
Chem. 12 (2007) 846 (and references cited therein).
References
[1] E.I. Solomon, R.K. Szilagyi, S.D. George, L. Basumallick, Chem. Rev. 104 (2004)
419.
[2] D.B. Rorabacher, Chem. Rev. 104 (2004) 651.
[3] H.W. Yim, L.M. Tran, E.D. Dobbin, D. Rabinovich, L.M. Liable-Sands, C.D.
Incarvito, K.-C. Larn, A.L. Rheingold, Inorg. Chem. 38 (1999) 2211.
[29] V.W.-W. Yam, V.C.-Y. Lau, K.-K. Cheung, J. Chem. Soc., Chem. Commun. (1995)
259.
[30] S. Frantz, J. Fiedler, I. Hartenbach, T. Schleid, W. Kaim, J. Organomet. Chem. 689
(2004) 3031.