10.1002/chem.202003506
Chemistry - A European Journal
COMMUNICATION
Acknowledgements
We gratefully acknowledge financial support from the National
Natural Science Foundation of China (No. 21625104 and
21971133) and the National Key Research and Development
Program of China (2017YFA0505200).
Keywords: Desymmetrization • Hydrosilylation • Si-stereogenic
center • Rhodium • Alkene
[1]
a) R. Tacke, T. Kornek, T. Heinrich, C. Burschka, M. Penka, M. Pulm,
C. Keim, E. Mutschler, G. Lambrecht. J. Organomet. Chem. 2001, 640,
140-165; b) M .Mutahi, T. Nittoli, L. Guo, S. Sieburth, J. Am. Chem. Soc.
2002, 124, 7363-7375; c) E. Remond, C. Martin, J. Martinez, F. Cavelier.
Chem. Rev. 2016, 116, 11654-11684.
[2]
a) Y. Kawakami, Y. Kakihana, O. Ooi, M. Oishi, K. Suzuki, S. Shinke, K.
Uenishi. Polym. Int. 2009, 58, 279-284; b) S. Koga, S. Ueki, M. Shimada,
R. Ishii, Y. Kurihara, Y. Yamanoi, J. Yuasa, T. Kawai, T. Uchida, M.
Iwamura, K. Nozaki, H. Nishihara. J. Org. Chem. 2017, 82, 6108-6117.
a) A. Brook, J. Gajewski. Heteroat. Chem. 1990, 1, 57-63; b) V. Volkova,
L. Guselnikov, E. Volnina, E. Buravtseva. Organometallics 1994, 13,
4661-4663.
Scheme 3. Steric effects exploration. Reaction conditions: alkene 1b (0.10
mmol, 1.0 equiv.), dihydrosilane 2 (0.12 mmol, 1.2 equiv.) under argon with
[Rh(cod)Cl]2 (2.0 μmol, 2 mol%) and MeO-DM-Biphep (R)-L3 (5.0 μmol, 5
mol%) in anhydrous THF (0.5 mL) at room temperature for 4 h. Isolated yield.
ee determined by HPLC analysis.
[3]
[4]
a) C. Strohmann, J. Hornig, D. Auer. Chem. Commun. 2002, 766-767;
b) M. Trzoss, J. Shao, S. Bienz. Tetrahedron-Asymmetry. 2004, 15,
1501-1505; c) S. Rendler, G. Auer, M. Oestreich. Angew. Chem. Int. Ed.
2005, 44, 7620-7624; d) S. Rendler, M. Oestreich, C. Butts, G. Lloyd-
Jones. J. Am. Chem. Soc. 2007, 129. 502-503; e) K. Igawa, J. Takada,
T. Shimono, K. Tomooka. J. Am. Chem. Soc. 2008, 130, 16132-16133;
f) A. Nakazaki, J. Usuki, K. Tomooka. Synlett. 2008, 13, 2064-2068; g)
K. Igawa, N. Kokan, K. Tomooka. Angew. Chem. Int. Ed. 2010, 49, 728-
731.
In order to explore stability of the Si-H bond in the product, we
prepared chiral silane 3ea (79% ee) and treated it with the
combination of [Rh(cod)Cl]2 while racemic BINAP (Scheme 3).
After 12 hours at ambient temperature, we found that no
racemization occurred, which indicated the Si-H is stable under
these conditions.
[5]
[6]
R. Shintani, Synlett, 2018, 29, 388-396.
a) R. Shintani, K. Moriya, T. Hayashi. J. Am. Chem. Soc. 2011, 133,
16440-16443; b) R. Shintani, K. Moriya, T. Hayashi. Org. Lett. 2012, 14,
2902-2905; c) R. Shintani, H. Otomo, K. Ota, T. Hayashi. J. Am. Chem.
Soc. 2012, 134, 7305-7308; d) R. Shintani, C. Takagi, T. Ito, M. Naito,
K .Nozaki. Angew. Chem. Int. Ed. 2015, 54, 1616-1620; e) R. Shintani,
R. Takano, K. Nozaki. Chem. Sci. 2016, 7, 1205-1211; f) Y. Sato, C.
Takagi, R. Shintani, K. Nozaki. Angew. Chem. Int. Ed. 2017, 56, 9211-
9216; g) R. Shintani, E. Maciver, F. Tamakuni, T. Hayashi. J. Am. Chem.
Soc. 2012, 134, 16955-16958.
Scheme 4. Optical stability exploration. Reaction conditions: chiral silane 3ea
(0.10 mmol, 1.0 equiv.) with rhodium catalyst (2.0 μmol, 2 mol%) and racemic
BINAP (5.0 μmol, 5 mol%) in anhydrous THF (0.5 mL) at room temperature for
12 h. ee determined by HPLC analysis.
[7]
[8]
[9]
Q. Zhang, K. An, L. Liu, Q. Zhang, H. Guo, W. He. Angew. Chem. Int.
Ed. 2017, 56, 1125-1129.
We also attempted to confirm the absolute configuration of the
asymmetric monohydrosilane via X-ray crystallographic analysis.
However, no available single-crystal was acquired. We then
turned toward to the electronic circular dichroism (ECD) to
provide useful information for this goal because ECD has been
proved to be a reliable option to determine the stereochemistry
of chiral molecules.[26] We compared the calculated ECD and
experimental spectrum of the compound 3ea, and 3la (see
Supporting Information, Figure S1‒S4), in which the (R)-
configuration of the stereogenic silicon center is more possible
than that of (S)-configuration.
Y. Lin, W. Ma, Z. Xu, Z. Zheng, J. Cao, K. Yang, Y. Cui, L. Xu. Chem.
Asian. J. 2019, 14, 2082-2085.
Q. Wang, F. Ye, J. Cao, Z. Xu, Z. J. Zheng, L. W. Xu, Catal. Commun.
2020, 138, 105950.
[10] P. W. Long, J. L. Xie, J. J. Yang, S. Q. Lu, Z. Xu, F. Ye, L. W. Xu, Chem.
Commun. 2020, 56, 4188-4191.
[11] G. Zhang, Y. Li, Y. Wang, Q. Zhang, T. Xiong, Q. Zhang. Angew. Chem.
Int. Ed. Doi: 10.1002/anie.202005341.
[12] a) Y. Kuninobu, K. Yamauchi, N. Tamura, T. Seiki, K. Takai. Angew.
Chem. Int. Ed. 2013, 52, 1520-1522; b) M. Murai, Y. Takeuchi, K.
Yamauchi, Y. Kuninobu, K. Takai. Chem. Eur. J. 2016, 22, 6048-6058.
[13] a) R. Corriu, J. Moreau. Tetrahedron. Lett. 1973, 14, 4469-4472; b) D.
Schmidt, S. O'Malley, J. Leighton. J. Am. Chem. Soc. 2003, 125, 1190-
1191; c) P. W. Long, X. F. Bai, F. Ye, L. Li, Z. Xu, K. F. Yang, Y. M. Cui,
Z. J. Zheng, L. W. Xu, Adv Synth Catal 2018, 360, 2825-2830; for
alcoholysis with dichlorosilane for Si-stereogenic center construction,
see: d) X. F. Bai, J. F. Zou, M. Y. Chen, Z. Xu, L. Li, Y. M. Cui, Z. J.
Zheng, L. W. Xu, Chem. Asian. J 2017, 12, 1730-1735.
In summary, we have developed
a
Rh-catalyzed
enantioselective construction of Si-stereogenic center via
intermolecular hydrosilylation of alkene with prochiral
dihydrosilanes. The reaction affords a series of stereogenic
tertiary silanes in good yields and enantioselectivities. Compared
to known methods, the current method shows a better tolerance
of functional groups and uses a simple, commercially available
catalyst system. This work demonstrated that Rh should warrant
more attention in the enantioselective hydrosilylation reactions
with carbon-carbon π bonds.
[14] a) Y. Kurihara, M. Nishikawa, Y. Yamanoi, H. Nishihara. Chem.
Commun. 2012, 48, 11564-11566; b) L. Chen, J. Huang, Z. Xu, Z.
Zheng, K. Yang, Y. Cui, J. Cao, L. Xu. Rsc. Adv. 2016, 6, 67113-67117.
[15] Y. Yasutomi, H. Suematsu, T. Katsuki. J. Am. Chem. Soc. 2010, 132,
4510-4511.
4
This article is protected by copyright. All rights reserved.