6992
C. D. Haffner et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6989–6992
Wei, A. G.; Salkoff, L. Nucleic Acids Res. 1990, 18, 2173; (k) Covarrubias, M.; Wei,
Table 4
A. A.; Salkoff, L. Neuron 1991, 7, 763.
Kv1.3 inhibition, PK and solubility data for compounds 13i and 13rr
4. (a) Attali, B.; Romey, G.; Honore, E.; Schmid-Alliana, A.; Mattei, M.-G.; Lesage,
F.; Ricard, P.; Barhanin, J.; Lazdunski, M. J. Biol. Chem. 1992, 267, 8650; (b) Attali,
B.; Honore, E.; Lesage, F.; Lazdunski, M.; Barhanin, J. FEBS Lett. 1992, 303, 229;
(c) Deutsch, C.; Chen, L.-Q. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 10036; (d) Liu,
Q.-H.; Fleischmann, B. K.; Hondpwicz, B.; Maier, C. C.; Turka, L. A.; Yui, K.;
Kotlikoff, M. I.; Wells, A. D.; Freedman, B. D. J. Exp. Med. 2002, 196, 897.
5. Xu, J.; Koni, P. A.; Wang, P.; Li, G.; Kaczmarek, L.; Wu, Y.; Li, Y.; Flavell, R. A.;
Desir, G. V. Hum. Mol. Genet. 2003, 12, 551.
Compd CLNDa aq sol Cmax (ng/mL)
DNAUCb
(h kg ng/mL/mg)
Kv1.3 IC50
M)
(lM)
@10 mpk po
(l
13i
13rr
304
52
900
2100
630
1630
0.35
0.25
a
Chemiluminescent nitrogen detection.
Dose normalized area under the curve.
b
6. Desir, G. V. Expert Opin. Ther. Targets 2005, 9, 571.
7. (a) Xu, J.; Wang, P.; Li, Y.; Li, G.; Kaczmarek, L. K.; Wu, Y.; Koni, P. A.; Flavell, R.
A.; Desire, G. V. Proc. Natl. Acad. Sci. 2004, 101, 3112; (b) Li, Y.; Wang, P.; Xu, J.;
Desire, G. V. Am. J. Physiol. Cell Physiol. 2006, 290, C345.
by compounds 13f and 13l. Compound 13rr which incorporated
both a hydroxyl and a trifluoromethyl moiety also generated an
inhibitor that was potent against Kv1.3 (IC50 = 250 nM). Many aro-
matic heterocycles showed IC50’s 6 750 nM, for example, 13ee,
13ff, 13hh, 13ii, 13kk, 13mm, 13oo and 13pp. There were how-
ever, some exceptions as demonstrated by compounds 13gg, 13jj,
8. Tschritter, O.; Machicao, F.; Stefan, N.; Schafer, S.; Weigert, C.; Staiger, H.;
Spieth, C.; Haring, H.-U.; Fritsche, A. J. Clin. Endocrinol. Metab. 2006, 91, 654.
9. (a) Panyi, G.; Possani, L. D.; Rodriguez de la Vega, R. C.; Gaspar, R.; Varga, Z.
Curr. Pharm. Des. 2006, 12, 2199; (b) Schmalhofer, W. A.; Bao, J.; McManus, O.
B.; Green, B.; Matyskiela, M.; Wunderler, D.; Bugianesi, R. M.; Felix, J. P.;
Hanner, M.; Linde-Arias, A.-R.; Ponte, C. G.; Velasco, L.; Koo, G.; Staruch, M. J.;
Miao, S.; Parsons, W. H.; Rupprecht, K.; Slaughter, R. S.; Kaczorowski, G. J.;
Garcia, M. L. Biochem. 2002, 41, 7781; (c) Pennington, M. W.; Beeton, C.; Galea,
C. A.; Smith, B. J.; Chi, V.; Monaghan, K. P.; Garcia, A.; Rangaraju, S.; Giuffrida,
A.; Plank, D.; Crossley, G.; Nugent, D.; Khaytin, I.; LeFievere, Y.; Peshenko, I.;
Dixon, C.; Chauhan, S.; Orzel, A.; Inoue, T.; Hu, X.; Moore, R. V.; Norton, R. S.;
Chandy, K. G. Mol. Pharmacol. 2009, 75, 762; (d) Pegoraro, S.; Lang, M.; Dreker,
T.; Kraus, J.; Hamm, S.; Meere, C.; Feurle, J.; Tasler, S.; Prutting, S.; Kuras, Z.;
Visan, V.; Grissmer, S. Bioorg. Med. Chem. Lett. 2009, 19, 2299; (e) Schmitz, A.;
Sankaranarayanan, A.; Azam, P.; Schmidt-Lassen, K.; Homerick, D.; Hansel, W.;
Wulff, H. Mol. Pharmacol. 2005, 68, 1254; (f) Bodendiek, S. B.; Mahieux, C.;
Hansel, W.; Wulff, H. Eur. J. Med. Chem. 2009, 44, 1838; (g) Garcia-Calvo, M.;
Leonard, R. J.; Novick, J.; Stevens, S. P.; Schmalhofer, W.; Kaczorowski, G. J.;
Garcia, M. L. J. Biol. Chem. 1993, 268, 18866; (h) Oguchi, T.; Watanabe, K.;
Ohkubo, K.; Abe, H.; Katoh, T. Chem. Eur. J. 2009, 15, 2826; (i) Miao, S.; Bao, J.;
Garcia, M. L.; Goulet, J. L.; Hong, X. J.; Kaczorowski, G. J.; Kayser, F.; Koo, G. C.;
Kotliar, A.; Schmalhofer, W. A.; Shah, K.; Sinclair, P. J.; Slaughter, R. S.; Springer,
M. S.; Staruch, M. J.; Tsou, N. N.; Wong, F.; Parsons, W. H.; Rupprecht, K. M.
Bioorg. Med. Chem. Lett. 2003, 13, 1161; (j) Judge, S. I. V.; Bever, C. T. Pharmacol.
Ther. 2006, 111, 224. and references therein; (k) Tamargo, J.; Caballero, R.;
Gomez, R.; Delpon, E. Expert Opin. Investig. Drugs 2009, 18, 399.
10. Haffner, C. D.; Guo, Y.; Thomson, S. A.; Schaller, L. T.; Boggs, S.; Dickerson, S.;
Gobel, J.; Gillie, D.; Condreay, J. P. Bioorg. Med. Chem. Lett. 2010, 20, 6983.
11. Beletskaya, I. P.; Bessmertnykh, A. G.; Averin, A. D.; Denat, F.; Guilard, R. Eur. J.
Org. Chem. 2005, 261.
12. This compound was either purchased from commercial vendors or prepared
via the reaction of saccharin with thionyl chloride in refluxing dioxane in the
presence of a catalytic amount of DMF.
13. Xu, L.; Shu, H.; Liu, Y.; Zhang, S.; Trudell, M. L. Tetrahedron 2006, 62, 7902.
14. Frozen CGE22 cells were thawed and then were transiently transduced to
express human Kv1.3 using 5% (MOI 50-75) Bacmam baculovirus .The cells
were grown adherently for 24 h, cultured, plated at 5000 cells per well and
assayed in an IonWorks PPC format. Channel blockers were detected by
depolarizing membrane potentials resulting in a shift in voltage dependence to
more positive potential. This was accomplished by performing a series of
voltage pulses from À70 mV (resting potential) to +40 mV; the maximum
channel activation and conduction potential. Psora-4, a known potent small
molecule inhibitor of Kv1.3 (IC50 = 724 nM under these assay conditions), was
used as the standard for this assay. The assay was configured to pick up both
tonic block and use-dependent inhibition of the compounds tested against
Kv1.3. Tonic block (pIC50) was calculated from the first 200-ms pulse current
amplitudes utilizing the following equation: tonic response = (1 À IPost1
(+40 mV)/IPre1(+40 mV)) Â 100. All tonic responses were then normalized to
DMSO control and Psora-4 control in the 384 PPC patch plate. Curve fitting
13ll, 13nn and 13qq which all had >1 lM potency. Several non-
aromatic heterocycles were examined as well as evidenced by
13q, 13r and 13u. These compounds showed reasonable potency
(IC50’s 6 640 nM), although as before there were some exceptions
(13s, 13t and 13v).
Many of the more potent compounds were further evaluated in
an effort to identify compounds that could be used for in vivo val-
idation studies. A balance between appropriate PK properties and
potency was the goal. Compounds 13f, 13l and 13j, although show-
ing very good potency, suffered from poor solubility and poor rat
PK (data not shown). Two compounds which did provide both
appropriate PK and solubility properties were compounds 13i
and 13rr. Table 4 shows some of the relevant data for these two
compounds. Both of these compounds provided the desired prop-
erties for further in vivo validation work.
In conclusion, we report the design and synthesis of a series of
substituted 3-amino-1,2-benzothiazole 1,1-dioxide derivatives.
Several of these compounds demonstrated similar potency com-
pared to PAP-1 when using the IonWorks patch clamp assay. Com-
pounds 13i and 13rr were identified as potential tool compounds
that could be used in future in vivo validation studies in diabetic
rodent models.
References and notes
1. (a) Defronza, R. A.; Bonadonna, R. C.; Ferrannini, E. Diabetes Care 1992, 15, 318;
(b) Lillioja, S.; Mott, D. M.; Spraul, M. N. Eng. J. Med. 1993, 329, 1988; (c)
Warram, J. H.; Martin, B. C.; Krolewski, A. S.; Soleldner, J. S.; Kahn, C. R. Ann.
Intern. Med. 1990, 113, 909.
2. (a) Zimmet, P.; Alberti, K. G. M. M.; Shaw, J. Nature 2001, 414, 782; (b) Virally,
M.; Blickle, J.-F.; Girard, J.; Halimi, S.; Simon, D.; Guillausseau, P.-J. Diabetes
Metab. 2007, 33, 231; (c) Muoio, D.; Newgard, M.; Christopher, B. Nat. Rev. Mol.
Cell Biol. 2008, 9, 193; (d) Chan, J. C. N.; Malik, V.; Jia, W.; Kadowski, T.; Yajnik,
C.; Yoon, K.-H.; Hu, F. B. J. Am. Med. Assoc. 2009, 301, 2129.
3. (a) Kamb, A.; Iverson, L. E.; Tanouye, M. A. Cell 1987, 50, 405; (b) Kamb, A.;
Tseng-Crank, J.; Tanouye, M. A. Neuron 1988, 1, 421; (c) Papazian, D. M.;
Schwarz, T. L.; Tempel, B. L.; Jan, Y. N.; Jan, L. Y. Science 1987, 237, 749; (d)
Pongs, O.; Kecskemethy, N.; Muller, R.; Krah-Jentgens, I.; Baumann, A.; Kiltz, H.
H.; Canal, I.; Llamazares, S.; Ferrus, A. EMBO J. 1988, 7, 1087; (e) Schwarz, T. L.;
Tempel, B. L.; Papazian, D. M.; Jan, Y. N.; Jan, L. Y. Nature 1988, 331, 137; (f)
Tempel, B. L.; Jan, Y. N.; Jan, L. Y. Nature 1988, 332, 837; (g) Christie, M. J.;
Adelman, J. P.; Douglass, J.; North, R. A. Science 1989, 244, 221; (h) Frech, G. C.;
Van Dongen, A. M.; Schuster, G.; Brown, A. M.; Joho, R. H. Nature 1989, 340, 642;
(i) Butler, A.; Wei, A.; Baker, K.; Slakoff, L. Science 1989, 243, 943; (j) Butler, A.;
formula: y = ((B À A)/1 + (10^X/10^C)^D) + A, where B = max, A = min, C = IC50
,
D = slope. Use-dependence (UD30) block was calculated from UD data from
amplitudes measured at the first and 10th pulses. UD response = 100 Â [1 À
((IPost10/IPost1)/(IPre10/IPre1))]. All use-dependence responses were
normalized to DMSO control and Psora-4 control and using the following
curve fitting equation: y = ((B À A)/1 + (10^X/10^C)^D) + A, where B = max,
A = min, C = IC50, and D = slope. The Kv1.5 assay was run in a similar way with
the exceptions that Verapamil was used as the control and stably transfected
CHO K1 cells were used instead of the CGE22 cells. The maximum
concentration that compounds were tested was 50 lM.