6918
M. Krug et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6915–6919
Table 2
ther derivatizations guided by the docking results are ongoing to
increase the affinity of the inhibitors.
Selectivity profile from the screening of protein kinase inhibition for compound 11d
Kinase familya
Kinase
IC50 valueb
M)
(
l
Acknowledgement
Tyrosine kinase (TK) family
ABL1
ABL2
FAK
InsR
InsRR
PDGFR-b
TIE2
392
nac
194
622
182
nac
nac
nac
759
376
129
nac
nac
nac
nac
nac
nac
nac
nac
nac
nac
nac
nac
129
nac
nac
271
The authors gratefully acknowledge the support of their work
by the country Saxoni-Anhalt and the Studienstiftung des Deuts-
chen Volkes to Martin Krug.
Receptor tyrosine kinase (RTK) family
References and notes
Tyrosine kinase like (TKl) family
IRAK1
LIMK1
CDK4/D1
CDK6/D1
CDK5/p25
CLK1
DYRK1A
HIPK1
Aurora A
Auroara C
1. Gardner, S. N.; Fernandes, M. J. Exp. Ther. Oncol. 2004, 4, 9.
2. Blagosklonny, M. V. Nat. Rev. Cancer 2002, 2, 221.
3. Lage, H. Cell. Mol. Life Sci. 2008, 65, 3145.
Cyclin dependent kinase (CDK) family
4. Kobayashi, S.; Boggon, T.; Dayaram, T.; Jänne, P.; Kocher, O.; Meyerson, M.;
Johnson, B.; Eck, M.; Tenen, D.; Halmos, B. N. Engl. J. Med. 2005, 352, 786.
5. Yun, C.; Mengwasser, K.; Toms, A.; Woo, M.; Greulich, H.; Wong, K.; Meyerson,
M. Proc. Natl. Acad. Sci. 2007, 105, 2070.
6. Gilmore, A. P.; Valentijn, A. J.; Wang, P.; Ranger, A. M.; Bundred, N.; O’Hare, M.
J.; Wakeling, A.; Korsmeyer, S. J.; Streuli, C. H. J. Biol. Chem. 2002, 277, 27643.
7. Chakravarti, A.; Loeffler, J. S.; Dyson, N. J. Cancer Res. 2002, 62, 200.
8. Barnes, C. J.; Ohshiro, K.; Rayala, S. K.; El-Naggar, A. K.; Kumar, R. Clin. Cancer
Res. 2007, 13, 4291.
9. Morgillo, F.; Woo, J. K.; Kim, E. S.; Hong, W. K.; Lee, H. Y. Cancer Res. 2006, 66,
10100.
10. Ryan, P. D.; Goss, P. E. Oncologist 2008, 13, 16.
11. Reinmuth, N.; Fan, F.; Liu, W.; Parikh, A. A.; Stoeltzing, O.; Jung, Y. D.; Bucana, C.
D.; Radinsky, R.; Gallick, G. E.; Ellis, L. M. Lab. Invest. 2002, 82, 1377.
12. Brachwitz, K.; Voigt, B.; Meijer, L.; Lozach, O.; Schächtele, C.; Molnár, J.;
Hilgeroth, A. J. Med. Chem. 2003, 46, 876.
CDK-like family
Protein kinase A (PKA) family
PKC-c
PKC-iota
ERK1
Mitogen activated protein kinase (MAPK) family
Casein kinase (CK) family
p38-a
INK1
CK1-
VRK1
WEE1
Nek3
PLK1
a1
Nek protein kinase family
Polo subfamily
13. Voigt, B.; Meijer, L.; Lozach, O.; Schächtele, C.; Totzke, F.; Hilgeroth, A. Bioorg.
Med. Chem. Lett. 2005, 15, 823.
14. Cocker, J. D.; Gregory G. I. German Patent 2,022,024, 1970; Chem. Abstr. 1970,
74, 141731.
a
b
c
Kinase families as reported in Ref. 32.
IC50 value determination followed recent protocols.12,13
15. Spectroscopical data of 1-aza-9-oxafluorene 8: mp 57–61 °C; 1H NMR (CDCl3)
d = 7.31 (dd, J = 7.7, 4.9 Hz, 1H), 7.36 (ddd, J = 8.3, 7.6, 0.9 Hz, 1H), 7.50 (ddd,
J = 8.3, 7.3, 1.7 Hz, 1H), 7.62 (d, J = 7.3 Hz, 1H), 7.92 (dd, J = 7.7, 0.5 Hz, 1H), 8.26
(dd, J = 7.6, 1.7 Hz, 1H), 8.43 (d, J = 4.9 Hz, 1H); m/z (ESI) 170 (M+H+).
16. Spectroscopical data of 1-aza-9-oxafluorene-N-oxide 9: mp 176–178 °C; 1H
NMR (CDCl3) d = 7.28 (dd, J = 7.7, 6.6 Hz, 1H), 7.45 (ddd, J = 8.2, 7.3, 0.8 Hz, 1H),
7.59 (ddd, J = 8.3, 7.3, 1.2 Hz, 1H), 7.71 (d, J = 8.3 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H),
7.95 (dd, J = 8.2 Hz, 1H), 8.32 (d, J = 6.6 Hz, 1H); m/z (ESI) 186 (M+H+).
17. Spectroscopical data of 4-chloro-1-aza-9-oxafluorene 10: mp 78–79 °C; 1H
NMR (CDCl3) d = 7.32 (d, J = 5.4, 1H), 7.45 (ddd, J = 8.3, 7.4, 0.9 Hz, 1H), 7.59
(ddd, J = 8.3, 7.4, 1.3 Hz, 1H), 7.64 (d, J = 8.3 Hz, 1H), 8.25 (d, J = 8.3 Hz, 1H), 8.32
(d, J = 5.4 Hz, 1H); m/z (ESI) 204 (M+H+).
Inactive, Ki >1000 lM.
Table 3
Anti-cancer screening data of 60 tumour cell lines as mean graph
midpoint (MG_MID) values for inhibitor 11f in comparison to used
cytostatics
Compound
MG_MID values
log GI50
log LC50
18. General procedure for the formation of the arylalkylamino target compounds
11a–g: compound 10 (0.25 g, 1 mmol) was dissolved in the respective amine
(25 mmol) and the mixture was heated at 135 °C for 20 h under argon
11f
À4.47
À4.41
À4.48
À4.85
À5.68
>À4.00
>À4.00
À4.04
À4.02
À5.60
Etoposide
Melphalan
Irinotecan
Cisplatin
atmosphere. Then the mixture was poured into
a saturated potassium
carbonate solution (25 mL) and ethyl acetate (50 mL) was added. After the
phase separation the water phase was extracted with ethyl acetate (25 mL) for
three times. The unified organic layers were dried over sodium sulphate,
filtered and the eluent was removed in vacuum. The resulting products were
each given by column chromatography over silica gel using mixtures of
cyclohexane and ethyl acetate. Characterising spectroscopical data of
representing selective derivatives: compound 11d: mp 148–154 °C; IR (KBr)
liferative activities were characterised as mean graph midpoint
values for a reduced cell proliferation shown as log GI50 value
and for the lethal toxicity as log LC50 value determined in a sulphur
rhodamine B cytotoxicity assay.29,30
The results are shown in Table 3 in comparison to NCI database
values for established cytostatic drugs used in anti-cancer
therapies.31
m
= 3319, 3058, 2995, 1604, 1584; 1H NMR (DMSO-d6) d = 3.09 (s, 3H), 4.56 (d,
J = 6.0 Hz, 2H), 6.49 (d, J = 5.9 Hz, 1H), 6.88 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.4 Hz,
2H), 7.37–7.48 (m, 3H), 7.63 (d, J = 7.9 Hz, 1H), 7.91 (d, J = 5.9 Hz, 1H), 8.43 (d,
J = 7.5 Hz, 1H); 13C NMR (DMSO-d6) d = 45.8, 55.6, 100.6, 102.5, 111.4, 114.4
(2 Â C), 122.0, 122.8, 123.4, 126.3, 128.5 (2 Â C), 131.3, 147.4, 150.5, 152.2,
158.7, 164.4; m/z (EI) 304 (M+). Elemental Anal. Calcd (%) for C19H16N2O2: C,
74.98; H, 5.30; N, 9.20. Found: C, 74.65; H, 5.41; N, 8.83. Compound 11e: mp
240–243 °C; IR (KBr)
m
= 3308, 3059, 2868, 1604, 1583; 1H NMR (DMSO-d6)
d = 4.65 (d, J = 6.1 Hz, 2H), 6.49 (d, J = 5.9 Hz, 1H), 7.26–7.31 (m, 1H), 7.32–7.53
(m, 6H), 7.65 (d, J = 7.8 Hz, 1H), 7.93 (d, J = 5.9 Hz, 1H), 8.44 (d, J = 7.1 Hz, 1H);
13C NMR (DMSO-d6) d = 45.8, 100.8, 102.4, 111.4, 122.1, 122.7, 123.4, 126.0,
126.5, 127.1, 127.3, 130.8, 133.6, 142.3, 147.5, 150.3, 152.3, 164.4; m/z (EI) 308
(M+); Elemental Analy. Calcd (%) for C18H13ClN2O: C, 70.02; H, 4.24; Cl, 11.48;
N, 9.07. Found: C, 70.11; H, 4.01; Cl, 11.53; N, 8.87.
The antiproliferative activities as log GI50 values prove our
inhibitor 11f as active as etoposide, melphalan or irinotecan. Fur-
thermore, our compound showed the lowest toxicity in among
melphalan, irinotecan or cisplatin. Their higher toxicities are
known to be critical because such a general toxicity causes severe
side effects in anti-cancer therapy.
In the current work we discovered a new class of selective IGF-
1R inhibitors which are qualified for a cancer resistance therapy as
dual IGF-1R/EGFR inhibitors and as exclusive IGF-1R inhibitors for
an anti-cancer therapy with EGFR-resistant inhibitors. They are the
first reported small molecule IGF-1R inhibitors with a proved and
characterised selectivity profile. Moreover, they are suggested as
well-tolerated anti-cancer drugs showing no general toxicity and
an antiproliferative potential similar to clinically used drugs. Fur-
19. Wells, A. Adv. Cancer Res. 2000, 78, 31.
20. Hazan, R. B.; Norton, L. J. Biol. Chem. 1998, 273, 9078.
21. Damstrup, L.; Rude-Voldborg, B.; Spang-Thomson, M.; Brunner, N.; Poulsen, H.
S. Br. J. Cancer 1998, 78, 631.
22. Shibuya, M. Angiogenesis 2006, 9, 225.
23. Yancopoulos, G. D.; Davis, S.; Gale, N. W.; Rudge, J. S.; Wiegand, S. J.; Holash, J.
Nature 2000, 407, 242.
24. Kerbel, R.; Folkman, J. Nat. Rev. Cancer 2002, 2, 727.
25. Vulpetti, A.; Bosotti, R. Farmaco 2004, 59, 759.
26. Heckmann, C. A.; Holopainen, T.; Wirzenius, M.; Keskitalo, S.; Jetsch, M.; Ylä-
Herttuale, S.; Wedgs, S. R.; Jürgensmeier, J. M.; Alitalo, K. Cancer Res. 2008, 68,
4754.