J. N. Moorthy, S. Saha
FULL PAPER
HRMS (ESI+): calcd. for C27H48N6 [M + H]+ 457.4018; found
457.4018.
Acknowledgments
J. N. M. is thankful to Department of Science and Technology
(DST), New Delhi for generous financial support. S. S. is grateful
to Council of Scientific and Industrial Research (CSIR), New Delhi
for a Senior Research Fellowship.
4: Yield 78%; gummy liquid. [α]2D5 = +13.9 (c = 0.2, DCM). IR
1
(KBr): ν = 2869, 2960, 3307 cm–1. H NMR (500 MHz, CDCl ): δ
˜
3
= 1.21 (t, J = 6.5 Hz, 9 H), 1.32–1.39 (m, 6 H), 1.65–1.79 (m, 3
H), 1.82–1.89 (m, 3 H), 2.08 (br. s, 3 H), 2.64–2.96 (m, 18 H), 3.16–
3.23 (m, 3 H), 3.69 (s, 6 H) ppm. 13C NMR (125 MHz, CDCl3): δ
= 17.0, 22.9, 25.2, 29.4, 46.1, 47.8, 54.6, 58.7, 134.1, 142.2 ppm.
HRMS (ESI+): calcd. for C30H54N6 [M + H]+ 541.3866; found
541.3867.
[1] a) C. Moberg, Angew. Chem. Int. Ed. 1998, 37, 248–268; b)
M. T. Powell, A. M. Porte, K. Burgess, Chem. Commun. 1998,
2161–2164; c) T. Fang, D.-M. Du, S.-F. Lu, J. Xu, Org. Lett.
2005, 7, 2081–2084; d) S. E. Gibson, M. P. Castaldi, Angew.
Chem. Int. Ed. 2006, 45, 4718–4720; e) S. L. Wiskur, H. A.
Haddou, J. J. Lavigne, E. V. Anslyn, Acc. Chem. Res. 2001, 34,
963–972; f) C. Foltz, B. Stecker, G. Marconi, S. B.-Laponnaz,
H. Wadepohl, L. H. Gade, Chem. Eur. J. 2007, 13, 9912–9923;
g) L. H. Gade, S. B.-Laponnaz, Chem. Eur. J. 2008, 14, 4142–
4152.
[2] a) G. Desimoni, G. Faita, K. A. Jorgensen, Chem. Rev. 2006,
106, 3561–3651; b) V. A. Pavlov, Tetrahedron 2008, 64, 1147–
1179.
[3] a) S.-G. Kim, K.-H. Kim, J. Jung, S. K. Shin, K. H. Anh, J.
Am. Chem. Soc. 2002, 124, 591–596; b) C. Moberg, Angew.
Chem. Int. Ed. 2006, 45, 4721–4723.
[4] a) H.-J. Choi, Y. S. Park, S. H. Yun, H.-S. Kim, C. S. Cho, K.
Ko, K. H. Ahn, Org. Lett. 2002, 4, 795–798; b) S. L. Tobey,
B. D. Jones, E. V. Anslyn, J. Am. Chem. Soc. 2003, 125, 4026–
4027; c) D.-M. Du, T. Fang, J. Xu, S.-W. Zhang, Org. Lett.
2006, 8, 1327–1330; d) N. Singh, D. O. Jang, Org. Lett. 2007,
9, 1991–1994; e) A. Ard, C. Venturi, C. Nativi, O. Francesconi,
G. Gabrielli, F. J. Cacada, J. J. Barbero S. Roelens, Chem. Eur.
J. 2010, 16, 414–418; f) M. Arunachalam, P. Ghosh, Org. Lett.
2010, 12, 328–331; g) M. Arunachalam, P. Ghosh, Inorg. Chem.
2010, 49, 943–951; h) J. Han, H. Wu, M. Teng, Z. Li, Y. Wang,
Y. P a n , Synlett 2009, 6, 933–936.
[5] a) J. N. Moorthy, P. Natarajan, P. Venugopalan, J. Org. Chem.
2009, 74, 8566–8577; b) J. N. Moorthy, P. Venkatakrishnan, P.
Natarajan, D.-F. Huang, T. J. Chow, J. Am. Chem. Soc. 2008,
130, 17320–17333.
[6] a) S.-G. Kim, K. H. Anh, Chem. Eur. J. 2000, 6, 3399–3403; b)
A. Vacca, C. Nativi, M. Cacciarini, R. Pergoli, S. Roelens, J.
Am. Chem. Soc. 2004, 126, 16456–16465; c) D. R. Turner, M. J.
Paterson, J. W. Steed, J. Org. Chem. 2006, 71, 1598–1608; d) Z.
Zhong, E. Anslyn, J. Am. Chem. Soc. 2002, 124, 9014–9015; e)
J. C. Manimala, S. L. Wiskur, A. D. Ellington, E. V. Anslyn, J.
Am. Chem. Soc. 2004, 126, 16515–16519.
5: Yield 76%; gummy liquid. [α]2D7 = –61.5 (c = 0.1, DCM). IR
(KBr): ν = 1265, 2875, 2966, 3420 cm–1. 1H NMR (500 MHz,
˜
CDCl3): δ = 1.15–1.28 (m, 9 H), 1.35–1.43 (m, 2 H), 1.68–1.78 (m,
1 H), 1.85–1.91 (m, 1 H), 2.27 (br. s, 1 H), 2,54–2.58 (m, 2 H),
2.64–2.77 (m, 4 H), 2.89–2.96 (m, 2 H), 3.27–3.34 (m, 1 H), 3.73
(d, J = 5.4 Hz, 2 H), 6.87 (s, 2 H) ppm. 13C NMR (125 MHz,
CDCl3): δ = 15.5, 15.8, 23.7, 26.7, 28.6, 29.4, 31.6, 47.7, 55.2, 56.1,
143.7, 144.2, 144.8, 145.1 ppm. HRMS (ESI+): calcd. for C18H30N2
[M + H]+ 275.2487; found 275.2487.
6: Yield 80%; gummy liquid. [α]2D7 = –51.23 (c = 0.2, DCM). IR
(KBr): ν = 1265, 2870, 2963, 3318 cm–1. 1H NMR (500 MHz,
˜
CDCl3): δ = 1.15 (t, J = 7.2 Hz, 6 H), 1.21 (t, J = 7.2 Hz, 3 H),
1.33–1.40 (m, 4 H), 1.66–1.80 (m, 2 H), 1.83–1.90 (m, 2 H), 2.25
(s, 3 H), 2.67–2.80 (m, 10 H), 2.82–2.96 (m, 4 H), 3.19–3.25 (m, 2
H), 3.70 (d, J = 3.8 Hz, 4 H) ppm. 13C NMR (125 MHz, CDCl3):
δ = 15.1, 15.1, 17.1, 22.8, 23.2, 25.1, 29.3, 46.1, 47.9, 54.7, 58.5,
132.3, 133.6, 140.0, 141.2 ppm. HRMS (ESI+): calcd. for C25H44N4
[M + H]+ 401.3644; found 401.3644.
7: Yield 88%; m.p. 68–70 °C. [α]2D7 = –20.2 (c = 0.1, DCM). IR
(KBr): ν = 1450, 1502, 1657, 2869, 2964, 3309 cm–1. 1H NMR
˜
(500 MHz, CDCl3): δ = 1.13–1.16 (m, 9 H), 1.64–1.70 (m, 4 H),
1.89–1.96 (m, 2 H), 2.10–2.18 (m, 2 H), 2.29 (s, 3 H), 2.60–2.70 (m,
6 H), 2.76–2.79 (m, 2 H), 2.90–2.94 (m, 2 H), 3.73 (dd, J = 5.3,
9.1 Hz, 2 H), 4.38 (dd, J = 4.2, 14.3 Hz, 2 H), 4.44 (dd, J = 4.6,
14.1 Hz, 2 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 14.8, 15.1,
16.6, 22.9, 23.3, 26.1, 30.7, 37.9, 47.2, 60.5, 131.2, 132.9, 141.1,
142.7, 174.8 ppm. HRMS (ESI+): calcd. for C25H40N4O2 [M +
H]+ 429.3229; found 429.3233.
Typical Procedure for the Enantioselective Michael Reaction using
Catalyst 4: A mixture of the catalyst (0.023 g, 0.048 mmol) and
ketone (0.50 g, 4.8 mmol) in DCM was stirred at room temperature
for 45 min. Subsequently the temperature was cooled to 3 °C and
p-methoxy-β-nitrostyrene (0.09 g, 0.5 mmol) was introduced. The
reaction mixture was stirred at 3 °C until the reaction was judged to
be complete based on TLC analysis. Upon completion, the reaction
mixture was purified rapidly by passing through a short pad of
neutral silica gel column. The crude product before silica gel
chromatography was submitted to 1H NMR spectroscopic analysis
to determine the diastereomeric ratio. The product after SiO2
chromatography was analyzed by HPLC to determine the enantio-
meric as well as the diastereomeric ratios. The syn and anti dia-
stereomers of the Michael addition products were readily distin-
guished by 1H NMR spectroscopy by the diagnostic chemical shifts
of the –CHAr-proton (see the Supporting Information for the
chemical shift data).
[7] K. Murai, S. Fukushima, S. Hayashi, Y. Yakahara, H. Fujioka,
Org. Lett. 2010, 12, 964–966.
[8] a) S. S. Mosse, A. Alexakis, Chem. Commun. 2007, 3123–3126;
b) S. B. Tsogoeva, Eur. J. Org. Chem. 2007, 1701–1716.
[9] S. Simaan, J. S. Seigel, S. E. Biali, J. Org. Chem. 2003, 68, 3699–
3701.
[10] a) K. Sakthivel, W. Notz, T. Bui, C. F. Barbas III, J. Am. Chem.
Soc. 2001, 123, 5260–5267; b) P. I. Dalko, L. Moisan, Angew.
Chem. Int. Ed. 2004, 43, 5138–5175; c) A. Berkessel, H. Groger,
Asymmetric Organocatalysis, Wiley-VCH, Weinheim, 2005; d)
J. Seayad, B. List, Org. Biomol. Chem. 2005, 3, 719–724; e) P. I.
Dalko,
Enantioselective
Organocatalysis,
Wiley-VCH,
Weinheim, 2007.
[11] a) O. M. Berner, L. Tedeschi, D. Enders, Eur. J. Org. Chem.
2002, 1877–1894; b) J. Christoffers, A. Baro, Angew. Chem. Int.
Ed. 2003, 115, 1726–1727; c) W. Notz, F. Tanaka, C. F.
Barbas III, Acc. Chem. Res. 2004, 37, 580–591.
[12] a) B. List, P. Pojarliev, H. J. Martin, Org. Lett. 2001, 3, 2423–
2425; b) J. M. Betancort, C. F. Barbas III, Org. Lett. 2001, 3,
3737–3740; c) P. Melchiorre, K. A. Jorgensen, J. Org. Chem.
2003, 68, 4151–4157; d) T. Okino, Y. Hoashi, Y. T. Sakemoto,
J. Am. Chem. Soc. 2003, 125, 12672–12673; e) O. Andrey, A.
Alexakis, A. Tomassini, G. Bernardinelli, Adv. Synth. Catal.
2004, 346, 1147–1168; f) N. Masse, R. Thayumanavan, F.
Supporting Information (see footnote on the first page of this arti-
1
cle): Details of synthesis, copies of the H and 13C NMR spectra
of catalysts 1–7, 1H NMR diagnostic chemical shift data for syn
and anti Michael addition products, and HPLC profiles for all re-
sults in Table 4.
6364
www.eurjoc.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2010, 6359–6365