pubs.acs.org/joc
warfarin (1) and acenocoumarol (2) which are clinically used
Platinum/Scandium-Cocatalyzed Cascade
Cyclization and Ring-Opening Reaction of Tertiary
Amines with Substituted Salicylaldehydes to
Synthesize 3-(Aminoalkyl)coumarins
as anticoagulants and rodenticides, have attracted the inter-
est of synthetic chemists (Figure 1).1a Thus far, a variety of
useful and efficient synthetic methods have been explored for
their synthesis. The major synthetic methods for the prep-
aration of coumarins include the Pechmann reaction,2 the
Knoevenagel condensation,3 the Wittig reaction,4 the Claisen
rearrangement,5 the Vilsmeier-Haack and Suzuki cross-
coupling reactions,6 the Pd-catalyzed site-selective cross-
coupling reaction,7 the ring-closing metathesis,8 and so on.
However, these conventional methods are frequently restricted
to relatively harsh conditions and cannot be used for sub-
strates with sensitive groups. Thus, an effective method for
the straightforward synthesis of 3-(aminoalkyl)coumarins
from simple, easily available, and cheap starting materials is
still in high demand in modern organic synthesis.
Xiao-Feng Xia,† Xing-Zhong Shu,† Ke-Gong Ji,†
Ali Shaukat,† Xue-Yuan Liu,† and Yong-Min Liang*,†,‡
†State Key Laboratory of Applied Organic Chemistry,
Lanzhou University, Lanzhou 730000, People’s Republic of
China, and ‡State Key Laboratory of Solid Lubrication,
Lanzhou Institute of Chemical Physics, Chinese Academy of
Science, Lanzhou 730000, People’s Republic of China
Received November 11, 2010
Our group is persistently interested in the oxidation of
tertiary amines to prepare various functionalized heterocy-
clic compounds.9 We recently reported a mild platinum-
catalyzed oxidative dehydrogenation of R and β-C(sp3)-H
bonds adjacent to the nitrogen of tertiary amines to synthesize
trisubstituted enamines and chromano[2,3-b]piperidines,
highlighting the power of Pt catalysis in the oxidation of
tertiary amines (Scheme 1a).9b Herein, we report a platinum/
scandium-cocatalyzed oxidative dehydrogenation of R,
β-C(sp3)-H bonds of tertiary amines with substituted salicylal-
dehydes giving 3-(aminoalkyl)coumarins, which are reported
to have anthelmintic, hypnotic, and insecticidal properties.10
Tertiary amines are dehydrogenated to give enamines, which
react in situ with various salicylaldehydes, resulting in the
development of a one-pot synthetic protocol involving aldol
reaction, cyclization, and ring-opening (Scheme 1b).
Our study began with the reaction of 1.0 equiv of
N-phenylpiperidine 1a, 1.5 equiv of salicylaldehyde 2a, 0.1
equiv of PtCl2 as catalyst, and 1,4-dioxane/H2O (2:1) as solvent
at 80 °C. To our delight, the desired 3-(aminoalkyl)coumarin
3a was isolated in 22% yield as a solid. In an attempt to
optimize the reaction conditions, other commonly used plati-
num catalysts were tested in this reaction. Among the platinum
catalysts, K2PtCl4 gave the best result (Table 1, entry 3). To
optimize the yield of the product further, we studied the
influence of different reaction media (Table 1, entries 4-6).
The synthesis of 3-(aminoalkyl)coumarins starting with a
platinum/scandium-cocatalyzed oxidative dehydrogena-
tion of R,β-C(sp3)-H bonds of tertiary amines in the
presence of ambient oxygen followed by reactions with
substituted salicylaldehydes is revealed. The in situ
formed enamines reacted with various salicylaldehydes,
which resulted in the development of a one-pot synthetic
protocol involving aldol reaction, cyclization, and then
ring-opening.
The development of novel methods for the annulation of
coumarins is very important in the field of synthetic organic
chemistry because coumarins are privileged structures in
biological chemistry as well as important structural units
found in natural and artificial products.1 For example,
(3) (a) Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. J. Org. Chem. 1999, 64,
1033. (b) Song, A.;Wang, X.; Lam, K. S. Tetrahedron Lett. 2003, 44, 1755
and references cited therein.
(1) (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103,
893. (b) Estevez-Craun, A.; Gonzalez, A. G. Nat. Prod. Rep. 1997, 465. (c)
Ngameni, B.; Touaibia, M.; Patnam, R.; Belkaid, A.; Sonna, P.; Ngadjui,
B. T.; Annabi, B.; Roy, R. Phytochemistry 2006, 67, 2573. (d) Chun, K.; Park,
S.-K.; Kim, H. M.; Choi, Y.; Kim, M.-H.; Park, C.-H.; Joe, B.-Y.; Chun,
T. G.; Choi, H.-M.; Lee, H.-Y.; Hong, S. H.; Kim, M. S.; Nam, K.-Y.; Han,
G. Biorg. Med. Chem. 2008, 16, 530. (e) Jana, R.; Trivedi, R.; Tunge, J.-A.
Org. Lett. 2009, 11, 3434.
(4) (a) Takeuchi, Y.; Ueda, N.; Uesugi, K.; Abe, H.; Nishioka, H.;
Harayama, T. Heterocycles 2003, 59, 217. (b) Maes, D.; Vervisch, S.;
Debenedetti, S.; Davio, C.; Mangelinckx, S.; Giubellina, N.; De Kimpe, N.
Tetrahedron 2005, 61, 2505.
(5) (a) Chattopadhyay, S. K.; Biswas, T.; Neogi, K. Chem. Lett. 2006, 35,
376. (b) Majumdar, K. C.; Debnath, P.; Maji, P. K. Tetrahedron Lett. 2007,
48, 5265. (c) Cairns, N.; Harwood, L. M.; Astles, D. P. J. Chem. Soc., Chem.
Commun. 1986, 16, 1264.
(2) (a) Sharghi, H.; Jokar, M. Heterocycles 2007, 71, 2721. (b) Tyagi, B.;
Mishra, M. K.; Jasra, R. V. J. Mol. Catal. A: Chem. 2007, 276, 47. (c) Laufer,
(6) Hesse, S.; Kirsch, G. Tetrahedron Lett. 2002, 43, 1213.
(7) Zhang, L.; Meng, T.; Fan, R.; Wu, J. J. Org. Chem. 2007, 72, 7279.
(8) Nguyen Van, T.; Debenedetti, S.; De Kimpe, N. Tetrahedron Lett.
2003, 44, 4199–4201.
(9) (a) Shu, X.-Z.; Xia, X.-F.; Yang, Y.-F.; Ji, K.-G.; Liu, X.-Y.; Liang,
Y.-M. J. Org. Chem. 2009, 74, 7464. (b) Xia, X.-F.; Shu, X.-Z.; Ji, K.-G.;
Yang, Y.-F.; Shaukat, A.; Liu, X.-Y.; Liang, Y.-M. J. Org. Chem. 2010, 75,
2893.
€
M. C.; Hausmann, H.; Holderich, W. F. J. Catal. 2003, 218, 315. (d) Potdar,
M. K.; Mohile, S. S.; Salunkhe, M. M. Tetrahedron Lett. 2001, 42, 9285. (e)
Sharma, G. V. M.; Reddy, J.; Sree Lakshmi, P.; Radha Krishna, P. Tetra-
hedron Lett. 2005, 46, 6119. (f) Manhas, M. S.; Ganguly, S. N.; Mukherjee,
S.; Jain, A. K.; Bose, A. K. Tetrahedron Lett. 2006, 47, 2423. (g) Romanelli,
G. P.; Bennardi, D.; Ruiz, D. M.; Baronetti, G.; Thomas, H. J.; Autino, J. C.
Tetrahedron Lett. 2004, 45, 8935.
(10) Mitra, A. K.; Misra, S. K.; Patra, A. Synth. Commun. 1980, 10, 915.
342 J. Org. Chem. 2011, 76, 342–345
Published on Web 12/09/2010
DOI: 10.1021/jo102219z
r
2010 American Chemical Society