C O M M U N I C A T I O N S
(3) (a) Nef, J. U. Libigs Ann. 1899, 308, 264–328. (b) Moureu, C. Bull. Soc.
Chim. Fr. 1904, 31, 526–528. Recent examples: (c) Tzalis, D.; Koradin,
C.; Knochel, P. Tetrahedron Lett. 1999, 40, 6193–6195. (d) Imahori, T.;
Hori, C.; Kondo, Y. AdV. Synth. Catal. 2004, 346, 1090–1092.
(4) (a) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131–209.
(b) Hartwig, J. F. In Handbook of Organopalladium Chemistry for Organic
Synthesis; Negishi, E., de Meijere, A. Eds.; Wiley: New York, 2002, pp
1097-1106. (c) Wan, Z.; Jones, C. D.; Koenig, T. M.; Pu, Y. J.; Mitchell,
D. Tetrahedron Lett. 2003, 44, 8257–8259. (d) Milata, V.; Radl, S.;
Voltrova, S. Sci. Synth. 2008, 32, 789–759.
(5) (a) Nerdel, F.; Buddrus, J.; Brodowski, W.; Hentschel, P.; Klamar, D.;
Weyerstahl, P. Justus Liebigs Ann. Chem. 1967, 710, 36–58. (b) Rhoads,
S. J.; Chattopadhyay, J. K.; Waali, E. E. J. Org. Chem. 1970, 35, 3352–
3358.
(6) (a) Watanabe, W. H.; Conlon, L. E. J. Am. Chem. Soc. 1957, 79, 2828–
2833. (b) Mckeon, J. E.; Fitton, P. Tetrahedron 1972, 28, 233–238.
(7) (a) Wittig, G.; Schlosser, M. Chem. Ber. 1961, 94, 1374–1383. (b) Petasis,
N. A. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A.
Ed.; John Wiley & Sons: New York, 1995; Vol. 1, pp 470-473.
(8) Normant, J. F.; Commercon, A.; Bourgain, M.; Villieras, J. Tetrahedron
Lett. 1975, 16, 3833–3836.
(9) Representative reviews: (a) McDonald, F. E. Chem. Eur. J. 1999, 5, 3103–
3106. (b) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. ReV. 2004, 104,
3079–3159. (c) Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2006,
45, 2176–2203. (d) Trost, B. M.; McClory, A. Chem. Asian J. 2008, 3,
164–194. Selected recent examples: (e) Varela-Ferna´ndez, A.; Gonza´lez-
Rodr´ıguez, C.; Varela, J. A.; Castedo, L.; Saa´, C. Org. Lett. 2009, 11, 5350–
5353. (f) Zacuto, M. J.; Tomita, D.; Pirzada, Z.; Xu, F. Org. Lett. 2010,
12, 984–987. (g) Varela-Ferna´ndez, A.; Garc´ıa-Yebra, C.; Varela, J. A.;
Esteruelas, M. A.; Saa´, C. Angew. Chem., Int. Ed. 2010, 49, 4278–4281.
(10) (a) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998, 37,
1415–1418. (b) Breuer, K.; Teles, J. H.; Demuth, D.; Hibst, H.; Scha¨fer,
A.; Brode, S.; Domgo¨rgen, H. Angew. Chem., Int. Ed. 1999, 38, 1404–
1405. (c) Elgafi, S.; Field, L. D.; Messerle, B. A. J. Organomet. Chem.
2000, 607, 97–104. (d) Casado, R.; Contel, M.; Laguna, M.; Romero, P.;
Sanz, S. J. Am. Chem. Soc. 2003, 125, 11925–11935.
(12) Gemel, C.; Trimmel, G.; Slugovc, C.; Kremel, S.; Mereiter, K.; Schmid,
R.; Kirchner, K. Organometallics 1996, 15, 3998–4004.
(13) See the Supporting Information for more details.
(14) In similar reaction conditions, 8-quinolinolato rhodium complexes were
reported to catalyze cyclotrimerization of phenylacetylene: Shestakova,
V. S.; Shestakov, G. K.; Yur’eva, L. P.; Belyi, A. A.; Temkin, O. N. Russ.
Chem. Bull. 1985, 34, 485–487. See the Supporting Information for other
reactions catalyzed by 8-quinolinolato rhodium compelxes. .
(15) Some isolated yields are much lower than GC (NMR) yields due to their
volatility and/or low stability.
(16) The reaction of 1-octyne with 2a in the presence of 3 gave a small amount
(3% NMR yield) of the corresponding anti-Markovnikov addition product.
(17) The reaction of tri(isopropyl)silylacetylene with 2a afforded only a trace
amount (< 10% NMR yield) of the addition product under the standard
reaction conditions. Other silyl acetylenes, such as trimethylsilyl-, trieth-
ylsilyl-, triphenylsilyl-, and tert-butyldimethylsilylacetylene, were not
effective as substrates.
(18) Allyl and benzyl alcohol did not give the desired enol ether when used as
O-nucleophiles. Acetic acid reacted under the standard reaction conditions,
and the corresponding anti-Markovnikov addition product, ꢀ-styryl acetate,
was produced in 28% GC yield (Z/E ) 54/46).
(19) Mechanistic investigation by deuterium labeling experiments has been
difficult due to rapid exchange of protons between MeOH and arylacetylenes.
(20) Stoichiometric addition of alcohols to vinylidene complexes has been
observed: (a) Gamasa, M. P.; Gimeno, J.; Martin-Vaca, B. M.; Borge, J.;
Garcia-Granda, S.; Perez-Carreno, E. Organometallics 1994, 13, 4045–
4057. (b) Gamasa, M. P.; Gimeno, J.; Martin-Vaca, B. M.; Isea, R.; Vegas,
A. J. Organomet. Chem. 2002, 651, 22–33.
(21) (a) Bruce, M. I. Chem. ReV. 1991, 91, 197–257. (b) Werner, H. Coord.
Chem. ReV. 2004, 248, 1693–1702. (c) Wakatsuki, Y. J. Organomet. Chem.
2004, 689, 4092–4109. (d) Doucet, H.; Martin-Vaca, B.; Bruneau, C.;
Dixneaf, P. H. J. Org. Chem. 1995, 60, 7247–7255. (e) Suzuki, T.;
Tokunaga, M.; Wakatsuki, Y. Org. Lett. 2001, 3, 735–737. (f) Tokunaga,
M.; Suzuki, T.; Koga, N.; Fukushima, T.; Horiuchi, A.; Wakatsuki, Y.
J. Am. Chem. Soc. 2001, 123, 11917–11924. (g) Grotjahn, D. B.; Lev, D. A.
J. Am. Chem. Soc. 2004, 126, 12232–12233. (h) Grotjahn, D. B.; Zeng,
X.; Cooksy, A. L. J. Am. Chem. Soc. 2006, 128, 2798–2799. (i) Grotjahn,
D. B.; Zeng, X.; Cooksy, A.; Kassel, W. S.; DiPasquale, A. G.; Zakharov,
L. N.; Rheingold, A. L. Organometallics 2007, 26, 3385–3402.
(11) (a) Murata, T.; Mizobe, Y.; Gao, H.; Ishii, Y.; Wakabayashi, T.; Nakano,
F.; Tanase, T.; Yano, S.; Hidai, M.; Echizen, I.; Nanikawa, H.; Motomura,
S. J. Am. Chem. Soc. 1994, 116, 3389–3398. (b) Kataoka, Y.; Matsumoto,
O.; Tani, K. Chem. Lett. 1996, 727–728.
JA1097385
9
34 J. AM. CHEM. SOC. VOL. 133, NO. 1, 2011