C O M M U N I C A T I O N S
results indicated that spatially restricted uncaging of cRb-A can
achieve Rac activation at the subcellular level.
Acknowledgment. We thank Prof. T. Furuta and Dr. T.
Kobayashi for helpful discussions. This study was supported in part
by the NIH (DK090868 and GM092930 to T.I.). N.U. and T.U.
are recipients of a fellowship from the Japan Society for the Pro-
motion of Science.
In conclusion, we demonstrated the development of a technique
that employs a novel caged compound together with a FKBP-FRB
heterodimerization system in order to manipulate Rho GTPase
activity at a precise subcellular location on a time scale of seconds.
Although it was predicted to be difficult to “cage” the effectiveness
of rapamycin using only small functional groups, a large protein
such as avidin could achieve this goal by precluding rapamycin’s
access into cytosol. This strategy greatly helped to silence the
compound activity as a chemical dimerizer until UV irradiation.
Upon cleavage of the linker between rapamycin and biotin-avidin
with UV irradiation, local release of a chemical dimerizer was
achieved, leading to subcellularly localized Rho GTPase activation.
Supporting Information Available: Synthesis, cell culturing,
transfection, confocal microscopy, and other experimental details. This
References
(1) Takai, Y.; Sasaki, T.; Matozaki, T. Physiol. ReV. 2001, 81, 153–208.
(2) Etienne-Manneville, S.; Hall, A. Nature 2002, 420, 629–635.
(3) Ridley, A. J.; Schwartz, M. A.; Burridge, K.; Firtel, R. A.; Ginsberg, M. H.;
Borisy, G.; Parsons, J. T.; Horwitz, A. R. Science 2003, 302, 1704–1709.
(4) Van Keymeulen, A.; Wong, K.; Knight, Z. A.; Govaerts, C.; Hahn, K. M.;
Shokat, K. M.; Bourne, H. R. J. Cell Biol. 2006, 174, 437–445.
(5) Sander, E. E.; ten Klooster, J. P.; van Delft, S.; van der Kammen, R. A.;
Collard, J. G. J. Cell Biol. 1999, 147, 1009–1021.
There are two limitations of the present approach. First, a target
location needs to be at or near the plasma membrane. Second,
molecular diffusion can affect the precise confinement of intended
effects particularly at later time points. This effect depends on
parameters associated with UV irradiation (such as size, mode
(continuous vs pulsed), and energy), diffusion coefficients of
chemical dimerizers, the FRB-FKBP dimerization complex, and
activated endogenous signaling molecules such as Rac. Further
optimization of these parameters enables a more stringent confine-
ment of signal activities. For example, smaller sized, pulsed, and
higher energy UV irradiation should help minimize the effect of
diffusion without compromising the uncaging efficiency. It also
helps to reduce diffusion of chemical dimerizers by using a denser
extracellular medium. In order to achieve slower lateral diffusion,
a transmembrane motif, instead of lipid modification, could be used
to anchor FRB to the plasma membrane.
(6) Itoh, R. E.; Kurokawa, K.; Ohba, Y.; Yoshizaki, H.; Mochizuki, N.;
Matsuda, M. Mol. Cell. Biol. 2002, 22, 6582–6591.
(7) Wong, K.; Pertz, O.; Hahn, K.; Bourne, H. Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 3639–3644.
(8) Pertz, O.; Hodgson, L.; Klemke, R. L.; Hahn, K. M. Nature 2006, 440,
1069–1072.
(9) Inoue, T.; Heo, W. D.; Grimley, J. S.; Wandless, T. J.; Meyer, T. Nat.
Methods 2005, 2, 415–418.
(10) Ellis-Davies, G. C. R. Nat. Methods 2007, 4, 619–628.
(11) Kao, J. P. Y. Current Protocols in Neuroscience; John Wiley & Sons: 2006,
Chapter 6, Unit 6.20.
(12) Borchardt, A.; Liberles, S. D.; Biggar, S. R.; Crabtree, G. R.; Schreiber,
S. L. Chem. Biol. 1997, 4, 961–968.
(13) Sadovski, O.; Jaikaran, A. S. I.; Samanta, S.; Fabian, M. R.; Dowling,
R. J. O.; Sonenberg, N.; Woolley, G. A. Bioorg. Med. Chem. 2010, in
press
(14) Banaszynski, L. A.; Liu, C. W.; Wandless, T. J. J. Am. Chem. Soc. 2005,
127, 4715–4721.
(15) Aujard, I.; Benbrahim, C.; Gouget, M.; Ruel, O.; Baudin, J. B.; Neveu, P.;
Jullien, L. Chem.sEur. J. 2006, 12, 6865–6879.
(16) Chen, Y.; Nakanishi, K.; Merrill, D.; Eng, C. P.; Molnar-Kimber, K. L.;
Failli, A.; Caggiano, T. J. Bioorg. Med. Chem. Lett. 1995, 5, 1355–1358.
(17) Wu, Y. I.; Frey, D.; Lungu, O. I.; Jaehrig, A.; Schlichting, I.; Kuhlman,
B.; Hahn, K. M. Nature 2009, 461, 104–108.
Recently, Wu et al.,17 Levskaya et al.,18 and Yazawa et al.19
reported an elegant approach to activate Rac at a subcellular location
using light-sensitive plant proteins. Compared to their strategies,
our current technique is more feasible to expand the number of
target proteins, since we and others have already developed a variety
of dimerization probes that can manipulate the activity of diverse
signaling molecules at the plasma membrane.9,20-23 Our caging
strategy is readily applicable to all these molecular probes to achieve
subcellularly targeted manipulation of cell signaling, thus making
it a powerful tool to probe spatiotemporally dynamic cellular events.
(18) Levskaya, A.; Weiner, O. D.; Lim, W. A.; Voigt, C. A. Nature 2009, 461,
997–1001.
(19) Yazawa, M.; Sadaghiani, A. M.; Hsueh, B.; Dolmetsch, R. E. Nat.
Biotechnol. 2009, 27, 941–945.
(20) Schreiber, S. L.; Kapoor, T. M.; Wess, G. Chemical biology; Wiley-VCH:
Weinheim, 2007.
(21) Suh, B. C.; Inoue, T.; Meyer, T.; Hille, B. Science 2006, 314, 1454–1457.
(22) Komatsu, T.; Kukelyansky, I.; McCaffery, J. M.; Ueno, T.; Varela, L. C.;
Inoue, T. Nat. Methods 2010, 7, 206–208.
(23) Balla, T.; Szentpetery, Z.; Kim, Y. J. Physiology (Bethesda) 2009, 24,
231–244.
JA108258D
9
14 J. AM. CHEM. SOC. VOL. 133, NO. 1, 2011