CDCl3) and synthetic accessibility. Efforts on addressing the
limit often associated with the simultaneous presence of
interconverting tautomers in heterocycle-based systems led
to the design of various multiply (number of hydrogen bonds
>3) hydrogen-bonded homo- and heterodimers with enhanced
strength, directionality, and specificity.8 Recently, a self-
complementary amidourea motif stabilized by four intermo-
lecular hydrogen bonds was found to be highly stable in polar
solvents of low polarity.9
Besides stability, specificity is the other major parameter
that determines the success and usefulness of designed
association modules.10 Among known systems, few allow
the adjustment (or programming) of association specificity.
We have constructed oligoamide strands carrying multiple
amide H and O atoms. These oligoamide strands associate
into duplexes via multiple hydrogen-bonding interactions
involving their amide H and O atoms. Our hydrogen-bonded
duplexes11 were found to be free of the tautomerism that
typically accompanies heterocycle-based complexes. In ad-
dition, secondary electrostatic interaction,12 a phenomenon
associated with most hydrogen-bonded heterocycles, is absent
in our oligoamide duplexes. As a result, the stability of a
hydrogen-bonded duplex is readily predictable, being directly
proportional to its number of interstrand hydrogen bonds.
The tuning of hydrogen-bonding sequence-specificity has so
far relied on varying the arrangement of hydrogen bond
donors and acceptors. Herein we describe a new approach
that adds to the diversity of association specificity while
maintaining the same sequence of hydrogen donors and
acceptors.
Instead of varying the arrangement of hydrogen bond
donors and acceptors, it was reasoned that changing the
spacings between interstrand hydrogen bonds in a duplex
should lead to altered association specificity. Such a pos-
sibility was first explored by the design of two oligoamide
strands 1 and 2 that contain napthalene residues with the
spacing of 7.2 Å between two close H-bonds. The benzene
residies, however, could only afford H-bonding sites with a
distance of 4.9 Å between two neighboring H-bonds, which
is obviously shorter than naphthalene units (Figure 1A).13
Sharing the same (DDAA) hydrogen-bonding sequence that
leads to the self-dimerization of the originally designed
oligoamide (e.g., 6 in Figure 2) with the spacing of ca. 4.8
Å, neither 1 nor 2 could undergo self-dimerization because
of the expanded spacing between the amide NH or carbonyl
groups attached to the napthalene residue. Instead, strands 1
and 2 carry complementary hydrogen-bonding sequences,
pairing of which leads to a heteroduplex 1·2.
(3) For recent examples, see: (a) Park, T.; Zimmerman, S. C.; Na-
kashima, S. J. Am. Chem. Soc. 2005, 127, 6520. (b) Lafitte, V. G. H.; Aliev,
A. E.; Horton, P. N.; Hursthouse, M. B.; Bala, K.; Golding, P.; Hailes,
H. C. J. Am. Chem. Soc. 2006, 128, 6544. (c) Park, T.; Zimmerman, S. C.
J. Am. Chem. Soc. 2006, 128, 11582. (d) Mather, B. D.; Baker, M. B.;
Beyer, F. L.; Green, M. D.; Berg, M. A. G.; Long, T. E. Macromolecules
2007, 40, 4396. (e) Blight, B. A.; Camara-Campos, A.; Djurdjevic, S.;
Kaller, M.; Leigh, D. A.; McMillan, F. M.; McNab, H.; Slawin, A. M. Z.
J. Am. Chem. Soc. 2009, 131, 14116. (f) Kuykendall, D. W.; Anderson,
A. C.; Zimmerman, S. C. Org. Lett. 2009, 11, 61. (g) Hisamatsu, Y.; Shirai,
N.; Ikeda, S.; Odashima, K. Org. Lett. 2010, 12, 1776.
(4) (a) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.;
Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W.
Science 1997, 278, 1601. (b) Beijer, F. H.; Sijbesma, R. P.; Kooijman, H.;
Spek, A. L.; Meijer, E. W. J. Am. Chem. Soc. 1998, 120, 6761. (c) So¨ntjens,
S. H. M.; Sijbesma, R. P.; van Genderen, M. H. P.; Meijer, E. W. J. Am.
Chem. Soc. 2000, 122, 7487.
(5) (a) Corbin, P. S.; Zimmerman, S. C. J. Am. Chem. Soc. 1998, 120,
9710. (b) Corbin, P. S.; Lawless, L. J.; Li, Z.-T.; Ma, Y.; Witmer, M. J.;
Zimmerman, S. C. Proc. Nat. Acad. Sci. U.S.A. 2002, 99, 5099.
(6) Greef, T. F. A. De; Smulders, M. M. J.; Wolffs, M.; Schenning,
A. P. H. J.; Sijbesma, R. P.; Meijer, E. W. Chem. ReV. 2009, 109, 5687.
(7) For selected examples, see: (a) Lange, R. F. M.; van Gurp, M.;
Meijer, E. W. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 3657. (b)
Folmer, B. J. B.; Sijbesma, R. P.; Versteegen, R. M.; van der Rijt, J. A. J.;
Meijer, E. W. AdV. Mater. 2000, 12, 874. (c) Sanchez, L.; Rispens, M. T.;
Hummelen, J. C. Angew. Chem., Int. Ed. 2002, 41, 838. (d) Moriuchi, T.;
Tamura, T.; Hirao, T. J. Am. Chem. Soc. 2002, 124, 9356. (e) Bosman,
A. W.; Brunsveld, L.; Folmer, B. J. B.; Sijbesma, R. P.; Meijer, E. W.
Macromol. Symp. 2003, 201, 143. (f) Wang, X.-Z.; Li, X.-Q.; Shao, X.-B.;
Zhao, X.; Deng, P.; Jiang, X.-K.; Li, Z.-T.; Chen, Y.-Q. Chem.sEur. J.
2003, 9, 2904. (g) Albrecht, M. Angew. Chem., Int. Ed. 2005, 44, 6448. (h)
Shi, L.; Wang, X.-W.; Sandoval, C. A.; Li, M.-X.; Qi, Q.-Y.; Li, Z.-T.;
Ding, K.-L. Angew. Chem., Int. Ed. 2006, 45, 4108. (i) Huerta, E.; Cequier,
E.; de Mendoza, J. Chem. Commun. 2007, 5016. (j) Huerta, E.; Metselaar,
G. A.; Fragoso, A.; Santos, E.; Bo, C.; de Mendoza, J. Angew. Chem., Int.
Ed. 2007, 46, 202. (k) Mahesh, S.; Thirumalai, R.; Yagai, S.; Kitamurab,
A.; Ajayaghosh, A. Chem. Commun. 2009, 5984. (l) Kushner, A. M.;
Vossler, J. D.; Williams, G. A; Guan, Z. J. Am. Chem. Soc. 2009, 131,
8766. (m) Yang, S. K.; Ambade, A. V.; Weck, M. J. Am. Chem. Soc. 2010,
132, 1637.
Oligoamide strands 1-5 and 7 were synthesized in the
presence of EDCI and HOBt by standard amide coupling
chemistry.13,14 These strands could either self-dimerize (i.e.,
3 and 7) into a homoduplex or pair (i.e., 1 and 2, or 4 and
5) into a heteroduplex.
Oligoamide strand 6, with its DDAA array, was found to
dimerize in chloroform with a binding constant of 6.5 × 104
M-1.11a In contrast, 1H NMR dilution experiments revealed
a dimerization constant of ∼33 M-1 for 1 in chloroform,
confirming the weak self-association expected of this strand.
1
However, a H NMR titration experiment using 1 upon
(8) (a) Bisson, A. P.; Hunter, C. A. Chem. Commun. 1996, 1723. (b)
Deans, R.; Cooke, G.; Rotello, V. M. J. Org. Chem. 1997, 62, 836. (c)
Folmer, B. J. B.; Sijbesma, R. P.; Kooijman, H.; Spek, A. L.; Meijer, E. W.
J. Am. Chem. Soc. 1999, 121, 9001. (d) Bisson, A. P.; Carver, F. J.;
Eggleston, D. S.; Haltiwanger, R. C.; Hunter, C. A.; Livingstone, D. L.;
McCabe, J. F.; Rotger, C.; Rowan, A. E. J. Am. Chem. Soc. 2000, 122,
8856. (e) Corbin, P. S.; Zimmerman, S. C. J. Am. Chem. Soc. 2000, 122,
3779. (f) Rieth, L. R.; Eaton, R. F.; Coates, G. W. Angew. Chem., Int. Ed.
2001, 40, 2153. (g) Gonza´lez, J. J.; Gonza´lez, S.; Priego, E. M.; Luo, C.;
Guldi, D. M.; de Mendoza, J.; Mart´ın, N. Chem. Commun. 2001, 163. (h)
Zhao, X.; Wang, X.-Z.; Jiang, X.-K.; Chen, Y.-Q.; Li, Z.-T.; Chen, G.-J.
J. Am. Chem. Soc. 2003, 125, 15128. (i) Baruah, P. K.; Gonnade, R.;
Phalgune, U. D.; Sanjayan, G. J. J. Org. Chem. 2005, 70, 6461. (j) Nowick,
J. S. Acc. Chem. Res. 2008, 41, 1319. (k) Hisamatsu, Y.; Shirai, N.; Ikeda,
S.; Odashima, K. Org. Lett. 2009, 11, 4342.
addition of 2 from 1:0 to 1:1.8 at 1.8 mM revealed a
(11) (a) Gong, B.; Yan, Y.; Zeng, H.; Skrzypczak-Jankunn, E.; Kim,
Y. W.; Zhu, J.; Ickes, H. J. Am. Chem. Soc. 1999, 121, 5607. (b) Zeng,
H. Q.; Miller, R. S.; Flowers, R. A.; Gong, B. J. Am. Chem. Soc. 2000,
122, 2635. (c) Zeng, H. Q.; Yang, X. W.; Flowers, R. A.; Gong, B. J. Am.
Chem. Soc. 2002, 124, 2903. (d) Zeng, H. Q.; Yang, X. W.; Brown, A. L.;
Martinovic, S.; Smith, R. D.; Gong, B. Chem. Commun. 2003, 1556. (e)
Yang, X. W.; Martinovic, S.; Smith, R. D.; Gong, B. J. Am. Chem. Soc.
2003, 125, 9932. (f) Bialecki, J. B.; Yuan, L. H.; Gong, B. Tetrahedron
2007, 63, 5460. (g) Cao, R. K.; Zhou, J. J.; Wang, W.; Feng, W.; Li, X. L.;
Zhang, P. H.; Deng, P. C.; Yuan, L. H.; Gong, B. Org. Lett. 2010, 12,
2958.
(9) Chu, W.-J.; Yang, Y.; Chen, C.-F. Org. Lett. 2010, 12, 3156.
(10) (a) Sessler, J. L.; Wang, R. Z. J. Org. Chem. 1998, 63, 4079. (b)
Sijbesma, R. P.; Meijer, E. W. Curr. Opin. Colloid Interface Sci. 1999, 4,
24. (c) Sherrington, D. C.; Taskinen, K. A. Chem. Soc. ReV. 2001, 30, 83.
(d) Keizer, H. M.; Sijbesma, R. P. Chem. Soc. ReV. 2005, 34, 226.
(12) (a) Jorgensen, W. L.; Pranata, J. J. Am. Chem. Soc. 1990, 112,
2008. (b) Pranata, J.; Wierschkem, S. G.; Jorgensen, W. L. J. Am. Chem.
Soc. 1991, 113, 2810.
(13) See the Supporting Information.
(14) Valeur, E.; Bradley, M. Chem. Soc. ReV. 2009, 38, 606
.
Org. Lett., Vol. 13, No. 1, 2011
55