A R T I C L E S
Nicolaou et al.
Scheme 1. Furan-Based Synthesis of F′ Ring Building Block 9a
Scheme 2. Synthesis of Vinyl Stannane 10a
a Reagents and conditions: (a) DMP (1.5 equiv), CH2Cl2, 25 °C, 1.5 h;
(b) Ph3PdCHCO2Me (1.5 equiv), CH2Cl2, 25 °C, 2 h; (c) DIBAL-H (1.0
M in CH2Cl2, 5.0 equiv), CH2Cl2, -78 °C, 1.5 h, 79% over the three steps;
(d) (-)-DET (1.2 equiv), Ti(Oi-Pr)4 (1.6 equiv), t-BuOOH (5.5 M in decane,
2.9 equiv), 4 Å MS, CH2Cl2, -20 °C, 1.5 h; (e) PMBOC(NH)CCl3 (1.5
equiv), La(OTf)3 (0.1 equiv), PhMe, 25 °C, 20 min, 80% over the two steps;
(f) LiCl (3.0 equiv), (2-fur)3P (0.5 equiv), Me3SnSnMe3 (3.0 equiv),
Pd2(dba)3 (0.1 equiv), THF, 25 °C, 30 min, 65%. Abbreviations: DMP )
Dess-Martin periodinane; DET ) diethyltartrate; MS ) molecular sieves;
PMB ) para-methoxybenzyl; Tf ) trifluoromethanesulfonyl; fur ) furyl;
dba ) dibenzylidineacetone.
a Reagents and conditions: (a) MeMgBr (3.0 M in Et2O, 2.5 equiv), Et2O,
-78 °C, 1 h, 98%; (b) 20% Pd(OH)2/C (10% w/w), H2, EtOAc/EtOH (1:
2), 25 °C, 6 h, 89%; (c) PhI(OAc)2 (2.5 equiv), TEMPO (0.1 equiv), CH2Cl2,
25 °C, 18 h; then A (3.0 equiv), 25 °C, 4 h, 92%; (d) DIBAL-H (1.0 M in
CH2Cl2, 5.0 equiv), CH2Cl2, -78 f 25 °C, 1.5 h, 89% (e) AcCl (1.1 equiv),
2,6-lut. (3.0 equiv), CH2Cl2, -78 °C, 30 min, 95%. Abbreviations: TBDPS
) tert-butyldiphenylsilyl; Bn ) benzyl; TEMPO ) 2,2,6,6-tetramethyl-1-
piperidinyloxy; DIBAL-H ) diisobutylaluminum hydride; Ac ) acetyl; lut.
) lutidine.
The synthesis of vinyl stannane 10 commenced from 1,2-
dihydrofuran (12) and proceeded through known intermediate
16 (two steps, 85% overall yield)20 as shown in Scheme 2. Thus,
a three-step sequence involving (a) oxidation (DMP), (b) Wittig
olefination (Ph3PdCHCO2Me), and (c) reduction (DIBAL-H)
led to skipped diene 17 in 79% overall yield. Sharpless
asymmetric epoxidation21 of the latter compound [Ti(Oi-Pr)4,
(-)-DET, t-BuOOH, 4 Å MS] followed by PMB protection22
[PMBOC(NH)CCl3, La(OTf)3 (cat.), 80% yield over the two
steps] furnished epoxide PMB ether 18. Subsequent palladium-
catalyzed stannane installation [Me3SnSnMe3, Pd2(dba)3 (cat.),
(2-fur)3P, 65% yield] completed the synthesis of the targeted
vinyl stannane 10, setting the stage for building block assembly.
3. Building Block Coupling and Polyepoxide Opening
Cascade Attempt. The π-allyl Stille coupling of building blocks
allylic acetate 9 and vinyl stannane 10 proceeded smoothly under
standard conditions [Pd2(dba)3 (cat.), LiCl, i-Pr2NEt] to provide
skipped diene 19 in 84% yield (Scheme 3). Shi epoxidation of
this epoxy diene (B,18b,23 Oxone) led to triepoxide 20 in 91%
yield as a mixture (ca. 7:1), presumably diastereomeric at the
epoxide site nearest to the F′ ring. This assumption was made
based on the expected influence of the F′ ring on the diaste-
reoselectivity of the epoxidation at its nearest site of unsatura-
tion.24 Hoping to influence favorably the regioselectivity of the
terminating epoxide opening event, we installed a vinyl group
at the end of the chain as shown in intermediate 21.25 This
modification was accomplished from triepoxide PMB ether 20
through a three-step sequence involving (a) DDQ cleavage of
the PMB ether, (b) DMP oxidation of the resulting alcohol, and
regio- and stereoselective Grignard addition to 13 was expected
on reactivity and steric grounds. Oxidation of the primary
alcohol of 14 was accomplished with PhI(OAc)2 in the presence
of TEMPO (cat.), and the resulting hydroxy aldehyde was
reacted, in the same pot, with stabilized phosphorane A to
generate R,ꢀ-unsaturated ester 15 in 92% overall yield. Reduc-
tion of the latter compound with DIBAL-H in CH2Cl2 at -78
°C gave the corresponding allylic alcohol (89% yield), whose
selective acetylation (AcCl, 2,6-lut., -78 °C) led to the desired
building block 9 in 95% yield.
(16) (a) Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189. (b) Morten,
C. J.; Jamison, T. F. J. Am. Chem. Soc. 2009, 131, 6678. (c) Byers,
J. A.; Jamison, T. F. J. Am. Chem. Soc. 2009, 131, 6383. (d) Van
Dyke, A. R.; Jamison, T. F. Angew. Chem., Int. Ed. 2009, 48, 4330.
(e) Morten, C. J.; Byers, J. A.; Van Dyke, A. R.; Vilotijevic, I.;
Jamison, T. F. Chem. Soc. ReV. 2009, 38, 3175.
(17) (a) Stille, J. K.; Milstein, D. J. Am. Chem. Soc. 1978, 101, 4992. (b)
Farine, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1.
(c) Del Valle, L.; Stille, J. K.; Hegedus, L. S. J. Org. Chem. 1990,
55, 3019. For an elegant application of this reaction in complex-
molecule synthesis, see: (d) Vanderwal, C. D.; Vosburg, D. A.; Weiler,
S.; Sorensen, E. J. J. Am. Chem. Soc. 2003, 125, 5393.
(18) (a) Tu, Y.; Want, Z.-X.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806.
(b) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem.
Soc. 1997, 119, 11224.
(19) Other groups have utilized similar methods for transformation of furans
to cyclic ethers: (a) Achmatowicz, O.; Bielski, R. Carbohydr. Res.
1977, 55, 165. (b) Guo, H.; O’Doherty, G. A. Angew. Chem., Int. Ed.
2007, 46, 5206. (c) Zhou, M.; O’Doherty, G. A. J. Org. Chem. 2007,
72, 2485. (d) Guo, H.; O’Doherty, G. A. Org. Lett. 2006, 8, 1609. (e)
Harris, J. M.; Keranen, M. D.; Nguyen, H.; Young, V. G.; O’Doherty,
G. A. Carbohydr. Res. 2000, 328, 17. (f) Li, M.; Scott, J.; O’Doherty,
G. A. Tetrahedron Lett. 2004, 45, 1005. (g) Henderson, J. A.; Jackson,
K. L.; Phillips, A. J. Org. Lett. 2007, 9, 5299. (h) Jackson, K. L.;
Henderson, J. A.; Motoyoshi, H.; Phillips, A. J. Angew. Chem., Int.
Ed. 2009, 48, 2346. (i) Krishna, U. M.; Srikanth, G. S. C.; Trivedi,
G. K. Tetrahedron Lett. 2003, 44, 8277. A Noyori reduction is used
as a means to induce asymmetry: (j) Fujii, A.; Hashiguchi, S.; Uematsu,
N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521.
(20) Radosevich, A. T.; Chen, V. S.; Shi, H.-W.; Toste, F. D. Angew. Chem.,
Int. Ed. 2008, 47, 3755.
(21) (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5976.
(b) Hanson, R. M.; Sharpless, K. B. J. Org. Chem. 1986, 51, 1922.
(22) Rai, A. N.; Basu, A. Tetrahedron Lett. 2003, 44, 2267.
(23) Tu, Y.; Frohn, M.; Wang, Z.-X.; Shi, Y. Org. Synth. 2003, 80, 1.
(24) Diastereomers at the other two epoxide sites were too minor to be
isolated.
(25) (a) Nicolaou, K. C.; Duggan, M. E.; Hwang, C.-K.; Somers, P. K.
J. Chem. Soc., Chem. Commun. 1985, 1359. (b) Nicolaou, K. C.;
Prasad, C. V. C.; Somers, P. K.; Hwang, C.-K. J. Am. Chem. Soc.
1989, 111, 5330. (c) Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.;
Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 5335.
9
216 J. AM. CHEM. SOC. VOL. 133, NO. 2, 2011