Pd(PPh3)4, in the absence of alkyne, a slow rearrangement
was observed to form silane 19 (Scheme 6). Compound 19
thetic value of these intermediates. To release the allylic
amines embedded in structure 16a, the t-Bu2Si moiety was
removed by protodesilylation (Scheme 7).
Scheme 6. Palladium-Catalyzed Rearrangement
Scheme 7. Synthesis of Allylic Amines
was characterized by H NMR and IR spectroscopy.24 The
1
In conclusion, silver-catalyzed silylene transfer is a general
method for the synthesis of silaaziridines. These strained
compounds undergo selective insertion reactions to afford
ring-expanded products. The azasilacyclopentenes obtained
from palladium-catalyzed alkyne insertion can be converted
into allylic amines by protodesilylation of the vinyl silane
moiety.
rearranged product 19 likely results from â-hydride elimina-
tion of intermediate 17 followed by reductive elimination.21a,25
Synthetic manipulations of the vinylsilane functionality
of azasilacyclopentene products 16 demonstrated the syn-
(18) For other transition-metal-mediated alkyne insertion reactions of
strained intermediates, see: (a) Barluenga, J.; Rodr´ıguez, F.; AÄ lvarez-
Rodrigo, L.; Zapico, J. M.; Fan˜ana´s, F. J. Chem. Eur. J. 2004, 10, 109-
116. (b) Buchwald, S. L.; Watson, B. T.; Wannamaker, M. W.; Dewan, J.
C. J. Am. Chem. Soc. 1989, 111, 4486-4494. (c) Grossman, R. B.; Davis,
W. M.; Buchwald, S. L. J. Am. Chem. Soc. 1991, 113, 2321-2322. (d)
Gao, Y.; Yoshida, Y.; Sato, F. Synlett 1997, 1353-1354. (e) Ohkubo, M.;
Hayashi, D.; Oikawa, D.; Fukuhara, K.; Okamoto, S.; Sato, F. Tetrahedron
Lett. 2006, 47, 6209-6212. (f) Seyferth, D.; Shannon, M. L.; Vick, S. C.;
Lim, T. F. O. Organometallics 1985, 4, 57-62. (g) Ohshita, J.; Ishikawa,
M. J. Organomet. Chem. 1991, 407, 157-165. (h) Saso, H.; Ando, W.;
Ueno, K. Tetrahedron 1989, 45, 1929-1940. (i) Saso, H.; Ando, W. Chem.
Lett. 1988, 1567-1570.
Acknowledgment. This research was supported by the
National Institute of General Medical Sciences of the
National Institutes of Health (GM-54909). Z.N. thanks the
National Institutes of Health for a predoctoral fellowship.
K.A.W. thanks Amgen and Lilly for awards to support
research. We thank Dr. Phil Dennison (UCI) for assistance
with NMR spectroscopy, Dr. Joseph W. Ziller (UCI) for
X-ray crystallography, and Dr. John Greaves (UCI) for mass
spectrometry.
(19) (a) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2003,
125, 11276-11282. (b) Ohno, H.; Hamaguchi, H.; Tanaka, T. Org. Lett.
2000, 2, 2161-2163. (c) O’Brien, P. Angew. Chem., Int. Ed. 1999, 38,
326-329.
(20) (a) Johannsen, M.; Jørgensen, K. A. Chem. ReV. 1998, 98, 1689-
1708. (b) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003, 42,
1364-1367. (c) Miller, K. M.; Molinaro, C.; Jamison, T. F. Tetrahedron:
Asymmetry 2003, 14, 3619-3625.
(21) (a) Palmer, W. S.; Woerpel, K. A. Organometallics 1997, 16, 1097-
1099. (b) Palmer, W. S.; Woerpel, K. A. Organometallics 1997, 16, 4824-
4827.
Supporting Information Available: Complete experi-
mental procedures and product characterization. This material
OL701424A
(22) (a) Walsh, R. In The Chemistry of Organic Silicon Compounds,
Part 1; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; pp 371-
391. (b) Armitage, D. A. In The Chemistry of the Silicon-Heteroatom Bond;
Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1991; pp 245-439.
(23) For other metal-catalyzed reductive coupling strategies of imines
and alkynes, see: (a) Black, D. A.; Arndtsen, B. A. Org. Lett. 2006, 8,
1991-1993. (b) Black, D. A.; Arndtsen, B. A. Org. Lett. 2004, 6, 1107-
1110. (c) See ref. 20c.
(24) The proton chemical shift (δ 4.13 ppm) and IR band (V ) 2137
cm-1) for the Si-H are similar to other aminosilanes: Gu, T.-Y. Y.; Weber,
W. P. J. Organomet. Chem. 1980, 184, 7-11.
(25) A 1,3-dipolar cycloaddition between dipole III (Scheme 3) and an
alkyne would also account for the formation of compounds 16a-f. We
have not, however, observed the cycloaddition under thermal conditions
(120 °C).
3776
Org. Lett., Vol. 9, No. 19, 2007