Synthesis of the WXYZA′ Domain of Maitotoxin
A R T I C L E S
Scheme 2. Synthesis of W Ring Building Block 12a
NMO-TPAP (cat.)20 to afford aldehyde 23. Wittig-type meth-
ylenation of the latter compound (Ph3PdCH2, 97% yield for
the last two steps) and exchange of protecting groups on the
secondary alcohol (TsOH ·H2O, 82% yield; TESCl, quant. yield)
led to derivative 24. This protecting group switch was dictated
by subsequent steps (see below). It should also be noted that
attempts to prepare the TES-protected derivative from the diol
obtained from benzylidene 22 through bis-TES protection/
monodesilylation proved less efficient than the sequence involv-
ing the TBS group. Finally, conversion of the terminal olefin
of 24 to the desired carboxyl moiety was accomplished through
the standard three-step sequence involving hydroboration
(Cy2BH; aq NaOH, H2O2, 89% yield) and oxidation (DMP
followed by Pinnick, quant. yield for the two steps).21,22
2.3. Coupling of Building Blocks and Completion of the
Synthesis of the WXYZA′ Maitotoxin Domain 7. The union of
fragments 11 and 12 and the elaboration of the resulting product
to the targeted WXYZA′ domain 7 of maitotoxin are sum-
marized in Scheme 3. Thus, coupling of alcohol 11 and
carboxylic acid 12 under the influence of the Shiina reagent23
(MNBA, Et3N, DMAP) afforded the corresponding ester in 84%
yield. The Takai ring-closing olefination/metathesis of the W
ring TES-protected olefinic ester 25a proved problematic as it
did earlier with the corresponding TBS-protected derivative
(25d) (which was prepared from aldehyde 23 (Scheme 2)).
Neither substrate served well under conditions expected to
induce the desired cyclization (TiCl4, TMEDA, Zn, PbCl2,
CH3CHBr2; see Table 1, entries 1-3),10,17,24 with starting
material being the only recoverable compound. Additionally,
the method previously developed by us10f,g to accomplish similar
transformations employing the Tebbe reagent25 proved unsuc-
cessful in this instance, leading only to extensive decomposition.
We reasoned that the difficulty in this reaction arose from the
bulkiness of the substituent on the W ring hydroxyl moiety.
We, therefore, opted to exchange the TES group of 25a for a
TMS group and a hydrogen. In contrast to our inability to
selectively remove the TBS group from the originally synthe-
sized TBS-protected derivative (25d), the desired cleavage of
the TES group from the TES-protected substrate (25a) pro-
ceeded smoothly in the presence of the other three silyl
protecting moieties. Indeed, this was the reason we were forced
to switch from the TBS-protected series of intermediates to their
TES-protected counterparts (23 f 24, Scheme 2; see above).
The exchange of the TES group in 25a to a TMS group in 25c
a Reagents and conditions: (a) O3, CH2Cl2/MeOH (5:1), -78 °C; then
NaBH4 (1.0 equiv), CH2Cl2/MeOH (5:1), -78 f 25 °C; (b) TBDPSCl (1.5
equiv), imidazole (3.0 equiv), CH2Cl2, 25 °C, 5 h, 93% over three steps;
(c) CSA (0.25 equiv), MeOH/CH2Cl2 (4:1), 0 °C, 2 h, 97%; (d) TBSOTf
(3.0 equiv), 2,6-lut. (4.0 equiv), CH2Cl2, 0 °C, 0.5 h, 98%; (e) CSA (0.2
equiv), MeOH, 0 °C, 1 h, 80%; (f) NMO (3.0 equiv), TPAP (0.05 equiv),
4 Å MS, CH2Cl2, 0 f 25 °C, 4 h; (g) Ph3PCH3Br (3.1 equiv), NaHMDS
(0.6 M in PhMe, 2.9 equiv), THF, 0 f 25 °C, 4 h, 97% over the two steps;
(h) TsOH·H2O (6.0 equiv), MeOH/CH2Cl2 (3:1), 25 °C, 3 h, 82%; (i)
TESCl, (2.0 equiv), imidazole (4.0 equiv), CH2Cl2, 25 °C, 1 h, quant.; (j)
Cy2BH (5.0 equiv), THF, 25 °C, 1 h; then 2 M aq NaOH, excess H2O2, 0
f 25 °C, 1 h, 89%; (k) DMP (1.5 equiv), NaHCO3 (2.0 equiv), CH2Cl2,
25 °C, 3 h; (l) NaClO2, NaH2PO4, 2-methyl-2-butene, t-BuOH, H2O, 25
°C, 0.5 h, quant. over the two steps. Abbreviations: Bn ) benzyl, TBAI )
tetra-n-butylammonium iodide, TBDPS ) tert-butyldiphenylsilyl, CSA )
(()-camphor-10-sulfonic acid, TPAP ) tetra-n-propylammonium perruth-
enate, NMO ) N-methylmorpholine-N-oxide, TES ) triethylsilyl, Cy )
cyclohexyl, DMP ) Dess-Martin periodinane.
20 with DDQ to afford targeted building block A′Z ring system
11 in 90% yield.
The construction of building block 12 was accomplished from
W ring system 21 (synthesized from 2-deoxy-D-ribose (14) in
12 steps and 39% overall yield as previously described),18,19 as
summarized in Scheme 2. Thus, reductive ozonolytic cleavage
of the terminal olefin (O3, NaBH4) and reaction of the resulting
primary alcohol with TBDPSCl and imidazole furnished fully
protected intermediate 22 in 93% overall yield. Methanolysis
of the benzylidene acetal of 22 under acidic conditions (CSA,
MeOH/CH2Cl2) then generated the corresponding diol (97%).
To differentiate between the two hydroxyl groups of the latter
intermediate, it was necessary to employ a two-step procedure
involving bis-silylation (TBSOTf, 2,6-lut., 98% yield) and
selective monodesilylation (CSA (cat.), MeOH, 0 °C, 80%
yield). The resulting primary alcohol was then oxidized with
(20) (a) Dengel, A. C.; Hudson, R. A.; Griffith, W. P. Transition Met. Chem.
1985, 10, 98. (b) Griffith, W. P.; Ley, S. V.; Whitcomb, G. P.; White,
A. D. J. Chem. Soc., Chem. Commun. 1987, 1625.
(21) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
(22) Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron 1981, 37,
2091.
(23) (a) Shiina, I.; Ibuka, R.; Kubota, M. Chem. Lett. 2002, 286. (b) Shiina,
I.; Kubota, M.; Ibuka, R. Tetrahedron Lett. 2002, 43, 7535. (c) Shiina,
I.; Oshiumi, H.; Hashizume, M.; Yamai, Y. S.; Ibuka, R. Tetrahedron
Lett. 2004, 45, 543. (d) Shiina, I.; Kubota, M.; Oshiumi, H.;
Hashizume, M. J. Org. Chem. 2004, 60, 1822.
(24) (a) Rainier, J. D.; Allwein, S. P. J. Org. Chem. 1998, 63, 5310. (b)
Rainier, J. D.; Allwein, S. P. Tetrahedron Lett. 1998, 39, 9601. (c)
Rainier, J. D.; Allwein, S. P.; Cox, J. M. Org. Lett. 2000, 2, 231. (d)
Rainier, J. D.; Allwein, S. P.; Cox, J. M. J. Org. Chem. 2001, 66,
1380. (e) Cox, J. M.; Rainier, J. D. Org. Lett. 2001, 3, 2919. (f)
Majumder, U.; Cox, J. M.; Rainier, J. D. Org. Lett. 2003, 5, 913. (g)
Johnson, H. W. B.; Majumder, U.; Rainier, J. D. J. Am. Chem. Soc.
2005, 127, 848. (h) Majumder, U.; Cox, J. M.; Johnson, H. W. B.;
Rainier, J. D. Chem.sEur. J. 2006, 12, 1736. (i) Johnson, H. W. B.;
Majumder, U.; Rainier, J. D. Chem.sEur. J. 2006, 12, 1747.
(25) (a) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc.
1978, 100, 3611. (b) Pine, S. H.; Zahler, R.; Evans, D. A.; Grubbs,
R. H. J. Am. Chem. Soc. 1980, 102, 3270.
(17) Johnson, H. W. B.; Majumder, U.; Rainier, J. D. Chem.sEur. J. 2006,
12, 1747.
(18) Nicolaou, K. C.; Nugiel, D. A.; Couladouros, E.; Hwang, C.-K.
Tetrahedron 1990, 46, 4517.
(19) Nicolaou, K. C.; Hwang, C.-K.; Duggan, M. E.; Nugiel, D. A.; Abe,
Y.; Bal Reddy, K.; DeFrees, S. A.; Reddy, D. R.; Awartani, R. A.;
Conley, S. R.; Rutjes, F. P. J. T.; Theodorakis, E. A. J. Am. Chem.
Soc. 1995, 117, 10227.
9
J. AM. CHEM. SOC. VOL. 133, NO. 2, 2011 223