Journal of the American Chemical Society
ARTICLE
Successful formation of polymer-B(C6F5)3 adducts required
the introduction of the PT subunit as the acceptor segment. Our
original thoughts for structural design focused on the more basic
and sterically accessible pyridal N-atom, relative to the azole
N-atom in BT, as shown in Scheme 3. Indeed, we find that
polymer 10 has a greater affinity for B(C6F5)3 than 1, despite
their structural similarities. Similar tendencies are observed with
the small molecule analogues 8 and 3. Examination of the
differences by which the absorption characteristics of 8 and 10
change with a given quantity of borane shows that there is a
previously not observed amplification effect, whereby the bind-
ing of B(C6F5)3 to a fractional number of basic sites can
change the optical properties of the entire backbone. Introduc-
tion of electron donating thiophene units adjacent the PT
acceptor, specifically the generation of 11 and 9, has the effect
of increasing both the distance between the PT unit and the alkyl
side chains and the electron density across the π-conjugated
system. The increased electron density, and more open coordi-
nation site of the PT unit, results in stronger B-N interactions
upon Lewis acid adduct formation. One therefore observes larger
changes in the optical band gaps of 9 and 11, compared to 8 and
10, upon B(C6F5)3 coordination. From a materials perspective, it
is worth pointing out that, through the binding of B(C6F5)3, new
NIR-absorbing polymers can be readily generated with band gaps
of 0.96 and 0.89 eV, for 10- B(C6F5) and 11- B(C6F5),
respectively.
The combination of experimental estimates of HOMO-
LUMO levels and the DFT results provides additional insights
on the role of Lewis acid binding on the preferences for site
attachment and the electronic structure of the chromophores. By
using BCl3 as the model acid, we find that there is a thermo-
dynamic preference for attaching to the pyridal N-atom over the
azole N-atom, consistent with the composite body of experi-
mental results. Coordination of the chromophore to the electron
deficient boron results in a lowering of both HOMO and LUMO
levels. However, the effect is more pronounced for the LUMO,
which resides predominantly near the acceptor fragment. This
differential influence over the HOMO and the LUMO is
responsible for the observed decrease in band gap energy.
’ REFERENCES
(1) Forrest, S. R.; Thompson, M. E. Chem. Rev. 2007, 107, 923–925.
(2) Meier, H. Angew. Chem., Int. Ed. 2005, 44, 2482–2506.
(3) Karsten, B. P.; Bijleveld, J. C.; Viani, L.; Cornil, J.; Gierschner, J.;
Janssen, R. A. J. J. Mater. Chem. 2009, 19, 5343–5350.
(4) Bijleveld, J. C.; Shahid, M.; Gilot, J.; Wienk, M. M.; Janssen,
R. A. J. Adv. Funct. Mater. 2009, 19, 3262–3270.
(5) Luo, M.; Shadnia, H.; Qian, G.; Du, X. B.; Yu, D. B.; Ma, D. G.;
Wright, J. S.; Wang, Z. Y. Chem.—Eur. J. 2009, 15, 8902–8908.
(6) Hellstrom, S.; Zhang, F. L.; Inganas, O.; Andersson, M. R. Dalton
Trans. 2009, 10032–10039.
(7) Zhang, F. L.; Bijleveld, J.; Perzon, E.; Tvingstedt, K.; Barrau, S.;
Inganas, O.; Andersson, M. R. J. Mater. Chem. 2008, 18, 5468–5474.
(8) Beaujuge, P. M.; Ellinger, S.; Reynolds, J. R. Nat. Mater. 2008,
7, 795–799.
(9) Son, H. J.; Han, W. S.; You, D. H.; Min, K. T.; Kwon, S. N.; Ko, J.;
Kang, S. O. J. Org. Chem. 2009, 74, 3175–3178.
(10) van Mullekom, H. A. M.; Vekemans, J. A. J. M.; Meijer, E. W.
Chem.—Eur. J. 1998, 4, 1235–1243.
(11) Albota, M.;; et al. Science 1998, 281, 1653–1656.
(12) Entwistle, C. D.; Marder, T. B. Chem. Mater. 2004,
16, 4574–4585.
(13) Lesley, M. J. G.; Woodward, A.; Taylor, N. J.; Marder, T. B.;
Thornton, A.; Bruce, D. W.; Kakkar, A. K. Chem. Mater. 1998,
10, 1355–1365.
(14) Haldi, A.; Kimyonok, A.; Domercq, B.; Hayden, L. E.; Jones,
S. C.; Marder, S. R.; Weck, M.; Kippelen, B. Adv. Funct. Mater. 2008,
18, 3056–3062.
(15) Chen, C. T. Chem. Mater. 2004, 16, 4389–4400.
(16) Zeng, W. D.; Cao, Y. M.; Bai, Y.; Wang, Y. H.; Shi, Y. S.; Zhang,
M.; Wang, F. F.; Pan, C. Y.; Wang, P. Chem. Mater. 2010, 22, 1915–1925.
(17) Mishra, A.; Fischer, M. K. R.; Bauerle, P. Angew. Chem., Int. Ed.
2009, 48, 2474–2499.
(18) Choi, H.; Baik, C.; Kang, S. O.; Ko, J.; Kang, M. S.; Nazeer-
uddin, M. K.; Gratzel, M. Angew. Chem., Int. Ed. 2008, 47, 327–330.
(19) Dennler, G.; Scharber, M. C.; Brabec, C. J. Adv. Mater. 2009,
21, 1323–1338.
(20) Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009,
109, 5868–5923.
(21) Kroon, R.; Lenes, M.; Hummelen, J. C.; Blom, P. W. M.; De
Boer, B. Polym. Rev. 2008, 48, 531–582.
(22) Chen, J. W.; Cao, Y. Acc. Chem. Res. 2009, 42, 1709–1718.
(23) Qian, G.; Wang, Z. Y. Chem.—Asian J. 2010, 5, 1006–1029.
(24) Gong, X.; Tong, M. H.; Xia, Y. J.; Cai, W. Z.; Moon, J. S.; Cao,
Y.; Yu, G.; Shieh, C. L.; Nilsson, B.; Heeger, A. J. Science 2009,
325, 1665–1667.
’ ASSOCIATED CONTENT
(25) Qian, G.; Wang, Z. Y. Can. J. Chem. 2010, 88, 192–201.
(26) Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.;
Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. J. Am.
Chem. Soc. 2008, 130, 732–742.
(27) Roncali, J. Chem. Rev. 1997, 97, 173–205.
(28) Romero-Nieto, C.; Durben, S.; Kormos, I. M.; Baumgartner, T.
Adv. Funct. Mater. 2009, 19, 3625–3631.
(29) Hancock, J. M.; Jenekhe, S. A. Macromolecules 2008,
41, 6864–6867.
(30) Kappaun, S.; Horner, S.; Kelterer, A. M.; Waich, K.; Grasse, F.;
Graf, M.; Romaner, L.; Niedermair, F.; Mullen, K.; Grimsdale, A. C.; Saf,
R.; List, E. J. W.; Zojer, E.; Slugovc, C. Macromol. Chem. Phys. 2008,
209, 2122–2134.
S
Supporting Information. Full details on materials synth-
b
esis, spectroscopic characterization, and all computational re-
sults. Complete ref 11. This material is available free of charge via
’ AUTHOR INFORMATION
Corresponding Author
(31) Terashima, T.; Nakashima, T.; Kawai, T. Org. Lett. 2007,
9, 4195–4198.
’ ACKNOWLEDGMENT
Financial support through the Center for Energy Efficient
Materials (DOE) and the National Science Foundation (DMR
Program) is gratefully acknowledged. G.C.W. is grateful for a
NSERC PDF scholarship. Drs. Robert Coffin, Junghwa Seo, and
Asit Parta are acknowledged for contributions to synthesis, UPS/
XPS, and CV measurements, respectively.
(32) Sun, M. T. J. Chem. Phys. 2006, 124, 054903.
(33) Yasuda, T.; Yamamoto, T. Macromolecules 2003,
36, 7513–7519.
(34) Monkman, A. P.; Palsson, L. O.; Higgins, R. W. T.; Wang, C. S.;
Bryce, M. R.; Batsanov, A. S.; Howard, J. A. K. J. Am. Chem. Soc. 2002,
124, 6049–6055.
4643
dx.doi.org/10.1021/ja110968m |J. Am. Chem. Soc. 2011, 133, 4632–4644