Recyclable Solid Ruthenium Catalysts Supported on Metal Oxides
[6] a) R. C. Cambie, R. C. Hayward, J. L. Jurlina, P. S. Rut-
ledge, P. D. Woodgate, J. Chem. Soc. Perkin Trans. 1
1978, 126–130; b) S. Torii, T. Inokuchi, S. Mishima, T.
Kobayashi, J. Org. Chem. 1980, 45, 2731–2735; c) S.
Stavber, B. Sket, B. Zajc, M. Zupan, Tetrahedron 1989,
45, 6003–6010; d) A. D. Cort, J. Org. Chem. 1991, 56,
6708–6709.
[7] a) A. Demonceau, E. Saive, Y. de Froidmont, A. F.
Noels, A. J. Hubert, I. T. Chizhevsky, I. A. Lobanova,
V. I. Bregadze, Tetrahedron Lett. 1992, 33, 2009–2012;
b) W. B. Motherwell, L. R. Roberts, J. Chem. Soc.
Chem. Commun. 1992, 1582–1583.
Experimental Section
Preparation of the Ru/CeO2 Catalysts
Supported catalysts were prepared by the impregnation
method through the use of various supports and ruthenium
complexes. A typical procedure is as follows: 1.0 g of CeO2
was added to a solution of [RuCl2ACTHNUTRGNE(UNG p-cymene)]2 (62 mg,
0.10 mmol, 20 mg as Ru) in 10 mL of methanol at 508C.
After impregnation, the resulting light yellow powder was
calcined in air at 4008C for 30 min to afford Ru (2.0 wt%)/
CeO2 as a dark brown powder.
[8] a) L. F. Tietze, A. Montenbruck, C. Schneider, Synlett
1994, 509–510; b) M. C. Pirrung, Y. R. Lee, Tetrahe-
dron Lett. 1994, 35, 6231–6234.
General Procedure for the Addition of Carboxylic
Acids to Terminal Alkynes
[9] K. E. Koenig, G. L. Bachman, B. D. Vineyard, J. Org.
All of the reactions were performed by the use of hot stir-
rers equipped with cooling blocks for refluxing the solution.
A typical reaction procedure is as follows: A mixture of car-
boxylic acid (1.0 mmol) and terminal alkyne (1.3 mmol) in
mesitylene (1.0 mL) was placed in a 20-mL glass Schlenk
tube with a balloon under an Ar atmosphere together with
125 mg of the Ru (2.0 wt%)/CeO2 catalyst (0.025 mmol as
Ru). The reaction mixture was stirred at 1308C for 12 h, and
then cooled rapidly in an ice bath. The products were identi-
fied by GC-MS, 1H and 13C NMR, and quantified by
1H NMR and GLC analyses using biphenyl as an internal
standard.
Chem. 1980, 45, 2362–2365.
[10] a) N. Sakai, K. Nozaki, K. Mashima, H. Takaya, Tetra-
hedron: Asymmetry 1992, 3, 583–586; b) C. G. Arena,
F. Nicolꢂ, D. Drommi, G. Bruno, F. Faraone, J. Chem.
Soc. Chem. Commun. 1994, 2251–2252.
[11] For example: a) G. F. Hennion, J. A. Nieuwland, J. Am.
Chem. Soc. 1934, 56, 1802–1803; b) H. Lemaire, H. J.
Lucas, J. Am. Chem. Soc. 1955, 77, 939–945; c) R. C.
Fahey, D. J. Lee, J. Am. Chem. Soc. 1966, 88, 5555–
5560; d) P. F. Hudrlik, A. M. Hudrlik, J. Org. Chem.
1973, 38, 4254–4258; e) G. A. Krafft, J. A. Katzenel-
lenbogen, J. Am. Chem. Soc. 1981, 103, 5459–5466;
f) R. C. Larock, K. Oertle, K. M. Beatty, J. Am. Chem.
Soc. 1980, 102, 1966–1974; g) R. D. Bach, R. A. Wood-
ard, T. J. Anderson, M. D. Glick, J. Org. Chem. 1982,
47, 3707–3712; h) C. Lambert, K. Utimoto, H. Nozaki,
Tetrahedron Lett. 1984, 25, 5323–5326.
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Re-
search (No. 21360393) from the Ministry of Education,
Sports, Culture, Science and Technology, Japan.
[12] a) The heterogeneously-catalyzed gas-phase addition of
acetic acid over ZnACTHNUTRGNEUNG(OAc)2/charcoal or other catalysts
has been used for the industrial manufacture of vinyl
acetate, see ref.[3], pp 228–229.
[13] C. Bruneau, P. H. Dixneuf, Metal Vinylidenes and Alle-
nylidenes in Catalysis Wiley-VCH, Weinheim, 2008,
pp 316–318.
[14] a) M. Rotem, Y. Shvo, Organometallics 1983, 2, 1689–
1691; b) M. Rotem, Y. Shvo, J. Organomet. Chem.
1993, 448, 189–204.
References
[1] R. A. Sheldon, R. S. Downing, Appl. Catal. A General
1999, 189, 163–183.
[2] For representative reviews, see: a) P. Laszlo, Acc.
Chem. Res. 1986, 19, 121–127; b) Y. Izumi, M. Onaka,
Adv. Catal. 1992, 38, 245–282; c) J. H. Clark, D. J. Mac-
quarrie, Chem. Soc. Rev. 1996, 25, 303–310; d) K.
Kaneda, K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebi-
tani, Catal. Surv. Jpn. 2000, 4, 31–38; e) B. F. Sels, D. E.
De Vos, P. A. Jacobs, Catal. Rev. Sci. Eng. 2001, 43,
443–488; f) T. Nishimura, S. Uemura, Synlett 2004,
201–216; g) K. Kaneda, K. Mori, T. Mizugaki, K. Ebi-
tani, Curr. Org. Chem. 2006, 10, 241–255; h) K.
Kaneda, K. Mori, T. Mizugaki, K. Ebitani, Bull. Chem.
Soc. Jpn. 2006, 79, 981–1016; i) S. Kannan, Catal. Surv.
Asia 2006, 10, 117–137; j) K. Kaneda, Synlett 2007,
999–1015.
[3] K. Weissermel, H. J. Arpe, Industrial Organic Chemis-
try, 3rd edn., VCH, Weinheim, 1997, pp 228–236.
[4] J. P. Monthꢁard, M. Camps, G. Seytre, J. Guillet, J. C.
Dubois, Angew. Makromol. Chem. 1978, 72, 45–55.
[5] C. Bruneau, M. Neveux, Z. Kabouche, C. Ruppin, P. H.
Dixneuf, Synlett 1991, 755–763.
[15] T. Mitsudo, Y. Hori, Y. Yamakawa, Y. Watanabe, J.
Org. Chem. 1987, 52, 2230–2239.
[16] a) C. Ruppin, P. H. Dixneuf, Tetrahedron Lett. 1986, 27,
6323–6324; b) C. Bruneau, P. H. Dixneuf, Chem.
Commun. 1997, 507–512.
[17] M. Neveux, B. Seiller, F. Hagedorn, C. Bruneau, P. H.
Dixneuf, J. Organomet. Chem. 1993, 451, 133–138.
[18] a) H. Doucet, J. Hçfer, C. Bruneau, P. H. Dixneuf, J.
Chem. Soc. Chem. Commun. 1993, 850–851; b) H.
Doucet, B. Martin-Vaca, C. Bruneau, P. H. Dixneuf, J.
Org. Chem. 1995, 60, 7247–7255.
[19] a) K. Melis, P. Samulkiewicz, J. Rynkowski, F. Ver-
poort, Tetrahedron Lett. 2002, 43, 2713–2716; b) K.
Melis, D. De Vos, P. Jacobs, F. Verpoort, J. Organomet.
Chem. 2003, 671, 131–136; c) K. Melis, F. Verpoort, J.
Mol. Catal. A: Chem. 2003, 194, 39–47.
[20] a) L. J. Goossen, J. Paetzold, D. Koley, Chem.
Commun. 2003, 706–707; b) L. J. Goossen, N. Rodrꢃ-
Adv. Synth. Catal. 2010, 352, 3045 – 3052
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3051