pubs.acs.org/joc
these skeletons in natural products, as well as functionalized
[4þ3] Cycloaddition of Aromatic r,β-Unsaturated
Aldehydes and Ketones with Epoxides: One-Step
Approach to Synthesize Seven-Membered Oxacycles
Catalyzed by Lewis Acid
organic molecules, such as, marcfortine,1 paraherquamide,2
and some other compounds.3 Unfortunately, unlike methods
for the synthesis of five- and six-membered oxacycles, which are
known and widely applied, the synthesis of seven-membered
oxacycles, especially 1,4-dioxide seven-membered oxacycles,
has evolved a smaller array of methods because of the unusual
molecular architecture, entropy reasons, ring strain, and the
transannular interaction of such compounds.4 Traditional
synthesis of these seven-membered oxacycles are reported
usually by intramolecular ring closure reactions,5 with intricate
procedures, complicated byproducts, extreme conditions, and
low yields. Therefore, the development of efficient methodol-
ogies that enables simple and more concise approaches to
generate this kind of oxacycles remains a preeminent challenge
in modern organic chemistry. The [4 þ 3] cycloaddition reac-
tion is a powerful approach to construct both seven-membered
carbocycles6 and seven-membered nitrogen-containing
heterocycles;7 however, seven-membered oxacycles are rarely
synthesized by [4 þ 3] cycloaddition method. Herein, we would
like to report a novel method to synthesize seven-membered
oxacycles via intermolecular [4 þ 3] cycloaddition. To the best
of our knowledge, it is the first time to report the synthesis of
1,4-dioxide seven-membered oxacycles from epoxides and R,β-
unsaturated carbonyls by intermolecular reaction.
Yu-Qiang Zhou,† Nai-Xing Wang,*,† Shu-Bao Zhou,†,‡
Zhong Huang,† and Linghua Cao‡
†Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing, China, 100190, and
‡College of Chemistry and Chemical Engineering,
Xinjiang University, Urumqi, China, 830046
Received February 4, 2010
A novel intermolecular [4 þ 3] cycloaddition method to
construct 1,4-dioxide seven-membered oxacycles was devel-
oped. This one-step method was carried out in the presence
of catalytic amount of (C2H5)2OBF3 under mild conditions.
Seven-membered oxacycles and some natural compounds
could be easily synthesized via this protocol. Control
experiments were carried out and possible mechanism for
the reaction was proposed. Asymmetric reactions were
proceeded and 3e was obtained with moderate ee value.
(4) (a) Entrena, A.; Gallo, M. A.; Espinosa, A.; Jaime, C.; Campos, J.;
Dominguez, J. F. J. Org. Chem. 1989, 54, 6034–6039. (b) Espinosa, A.;
Entrena, A.; Gallo, M. A.; Campos, J.; Domhguez, J. F.; Camacho, E.;
Garrido, R. J. Org. Chem. 1990, 55, 6018–6023. (c) Ullapu, P. R.; Min, S. J.;
Chavre, S. N.; Choo, H.; Lee, J. K.; Pae, A. N.; Kim, Y.; Chang, M. H.; Cho,
Y. S. Angew. Chem., Int. Ed. 2009, 48, 2196–2200. (d) Illuminati, G.;
Mandolini, L. Acc. Chem. Res. 1981, 14, 95–102. (e) Mandolini, L. Adv.
Phys. Org. Chem. 1986, 22, 1–111. (f) Kreiter, C. G.; Lehr, K.; Leyendecker,
M.; Sheldrik, W. S.; Exner, R. Chem. Ber. 1991, 124, 3–12.
(5) For traditional synthesis of 1,4-dioxide seven-membered oxacycles,
see: (a) Wilckens, K.; Uhlemann, M.; Czekelius, C. Chem.;Eur. J. 2009, 15,
13323–13326. (b) Chambers, R. D.; Lindley, A. A.; Philpot, P. D. J. Chem.
~
Soc., Perkin I 1979, 214–219. (d) Sierra, M. A.; Amo, J. C.; Mancheno, M. J.;
Gomez-Gallego, M. J. Am. Chem. Soc. 2001, 123, 851–861. (e) Sierra, M. A.;
ꢀ
Search for new methodologies for the selective synthesis
of 1,4-dioxide seven-membered oxacycles continues to be of
great interest for organic chemists because of the presence of
~
Mancheno, M. J.; Saez, E.; Amo, J. C. J. Am. Chem. Soc. 1998, 120, 6812–
6813. (f) Bottini, A. T.; Corson, F. P.; Bottner, E. F. J. Org. Chem. 1965, 31,
ꢀ
€
586–587. (g) Ozaki, S.; Matsui, E.; Yoshinaga, H.; Kitagawa, S. Tetrahedron
Lett. 2000, 41, 2621–2624. (h) Wei, H. X.; Schlosser, M. Chem.;Eur. J. 1998,
4, 1738–1743. (i) Dmitrieva, L. L.; Nikitina, L. P.; Albanov, A. I.; Nedolya,
N. A. Russ. J. Org. Chem. 2005, 41, 1430–1444. (j) Chatterjee, A. K.; Morgan,
J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 3783–3784.
(1) For selected examples, see: (a) Kuo, M. S.; Yurek, D. A.; Mizsak,
S. A.; Cialdella, J. I.; Baczynskyj, L.; Marshall, V. P. J. Am. Chem. Soc. 1999,
121, 1763–1767. (b) Trost, B. M.; Cramer, N.; Bernsmann, H. J. Am. Chem.
Soc. 2007, 129, 3086–3087. (c) Lee, B. H.; Kornis, G. I.; Cialdella, J. I.;
Clothier, M. F.; Marshall, V. P.; Martin, D. G.; McNally, P. L.; Mizsak,
S. A.; Whaley, H. A.; Wiley, V. H. J. Nat. Prod. 1997, 60, 1139–1142. (d) Lee,
B. H.; Clothier, M. F. J. Org. Chem. 1997, 62, 1863–1867.
€
(k) Bottini, A. T.; Corson, F. P.; Bottner, E. F. J. Org. Chem. 1965, 30, 2988–
2994. (l) Bottini, A. T.; Maroski, J. G. J. Org. Chem. 1973, 38, 1455–1462.
(m) Yamanaka, H.; Shimamura, T.; Teramura, K. Chem. Lett. 1972, 921–922.
(n) Wei, H. X.; Schlosser, M. Chem.;Eur. J. 1998, 4, 1738–1743. (o) Bottini,
€
A. T.; Corson, F. P.; Bottner, E. F. J. Org. Chem. 1966, 31, 389–391.
(2) For selected examples, see: (a) Stocking, E. M.; Sanz-Cervera, J. F.;
Williams, R. M. Angew. Chem., Int. Ed. 1999, 38, 786–789. (b) Williams,
R. M.; Cao, J.; Tsujishima, H. Angew. Chem., Int. Ed. 2000, 39, 2540–2544.
(c) Stocking, E. M.; Sanz-Cervera, J. F.; Williams, R. M. Angew. Chem., Int.
Ed. 2001, 40, 1296–1298. (d) Lee, B. H.; Clothier, M. F.; Johnson, S. S.
(6) For [4 þ 3] cycloaddition to construct seven-membered carbocycles, see:
(a) Ivanova, O. A.; Budynina, E. M.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii,
P. V. Angew. Chem., Int. Ed. 2008, 47, 1107–1110. (b) Trost, B. M.; MacPherson,
ꢀ
ꢀ
D. T. J. Am. Chem. Soc. 1987, 109, 3483–3484. (c) Prie, G.;Prveost, N.; Twin, H.;
Fernandes, S. A.; Hayes, J. F.; Shipman, M. Angew. Chem., Int. Ed. 2004, 43,
6517–6519. (d) Davies, H. M. L.; Dai, X. J. Am. Chem. Soc. 2004, 126, 2692–
ꢀ
Bioorg. Med. Chem. Lett. 2001, 11, 553–554. (e) Lopez-Gresa, M. P.;
Gonzalez, M. C.; Ciavatta, L.; Ayala, I.; Moya, P.; Primo, J. J. Agric. Food
ꢀ
ꢀ ꢀ ꢁ
2693. (e) Gulıas, M.; Duran, J.; Lopez, F.; Castedo, L.; Mascarenas, J. L. J. Am.
´
Chem. 2006, 54, 2921–2925. (f) Stocking, E. M.; Williams, R. M.; Sanz-
Cervera, J. F. J. Am. Chem. Soc. 2000, 122, 9089–9098. (g) Williams, R. M.;
Cao, J. H.; Tsujishima, H.; Cox, R. J. J. Am. Chem. Soc. 2003, 125, 12172–
Chem. Soc. 2007, 29, 11026–11027. (f) Rameshkumar, C.; Hsung, R. P. Angew.
Chem., Int. Ed. 2004, 43, 615–618.
(7) For [4 þ 3] cycloaddition to construct seven-membered nitrogen-
ꢀ
12178. (h) Domingo, L. R.; Zaragoza, R. J.; Williams, R. M. J. Org. Chem.
containing heterocycles, see: (a) Trost, B. M.; Marrs, C. M. J. Am. Chem.
ꢀ
Soc. 1993, 115, 6636–6645. (b) Barluenga, J.; Tomas, M.; Ballestros, A.;
2003, 68, 2895–2902.
(3) For selected examples, see: (a) Conejo-Garcı
ꢀ~
a, A.; Nuneza, M. C.;
guez-Serrano, F.; Aranega, A.; Gallo, M. A.; Espinosa,
´
ꢀ
´
Santamarıa, J.; Lopez-Ortiz, F. J. Chem. Soc., Chem. Commun. 1994, 3, 321–
322. (c) Shintani, R.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. 2007,
129, 12356–12357. (d) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96,
49–92.
ꢀ
Marchal, J. A.; Rodrı
´
A.; Campos, J. M. Eur. J. Med. Chem. 2008, 43, 1742–1748. (b) Fall, Y.;
ꢀ
Vidal, B.; Alonso, D.; Gomez, G. Tetrahedron Lett. 2003, 44, 4467–4469.
DOI: 10.1021/jo101669t Published on Web 12/30/2010
r
J. Org. Chem. 2011, 76, 669–672 669
2010 American Chemical Society