inevitable to prepare the coupling reagents. Ultimately, the
direct dehydrogenative C-N coupling between arenes and
N-H sulfoximines is ideal from the viewpoint of step
economy (eq 3). However, this type of coupling is, to the
best of our knowledge, unprecedented.
conversion, and other reaction systems using K2CO3, KOAc,
o-xylene, DMSO, THF, or CH2Cl2 largely diminished the yields
(0-54% GC yields). By using the copper-based catalyst, a
variety of 2-substituted 1,3,4-oxadiazoles efficiently coupled
with 2a. Electron-donating as well as electron-withdrawing
groups on the benzene ring were compatible toward the reaction
(entries 2-5). A bulky naphthalene substituent did not interfere
(entry 6). Moreover, alkyl-substituted 1g coupled (entry 7). The
generality of sulfoximines was also good (entries 8-11).
Noteworthy is the fact that the carbon bromide moiety of 2e
was left intact, which could be useful for further manipulation
by a conventional cross-coupling methodology (entry 11).
Among other azoles tested, benzoxazoles and benzothia-
zole were found to undergo direct coupling without any
difficulties (Figure 1).11 The corresponding 2-iminoazoles
Recently, synthetic options by metal-catalyzed direct C-H
functionalization have grown rapidly resulting in a large
impact on synthetic organic chemistry.8 In this context, a
few successful intermolecular C-N cross-couplings of arenes
and nitrogen nucleophiles involving alkylamines, anilines,
and amides have been developed.9,10 Herein, we report a
catalytic direct sulfoximination of azoles and polyfluoroare-
nes for the synthesis of N-(hetero)arylsulfoximines. The
reaction proceeds very smoothly under inexpensive copper
catalysis at room temperature.
In a typical experiment, treatment of 2-phenyl-1,3,4-oxadia-
zole (1a) with S-methyl-S-phenylsulfoximine (2a) in the pres-
ence of 10 mol % of Cu(OAc)2·OH2 and 3.0 equiv of K3PO4
in DMF under ambient conditions for 8 h afforded the directly
iminated product 3aa in 92% yield (96% GC) (Table 1, entry
Table 1. Copper-Catalyzed Direct Sulfoximination of
1,3,4-Oxadiazoles 1 with Sulfoximines 2a
Figure 1. Products of Copper-Catalyzed Direct Sulfoximination
of Azoles and Polyfluoroarenes.
entry
R1 1
Ph (1a)
4-MeC6H4 (1b)
4-MeOC6H4 (1c) 2a
4-CF3C6H4 (1d)
4-ClC6H4 (1e)
1-naphthyl (1f)
R2, R3 2
Ph, Me (2a)
3, yield (%)b
1
2
3
4
5
6
3aa, 92 (96)
3ba, 86
3ca, 95
3da, 89
3ea, 90
3fa, 92
4aa-ca and 5aa were obtained in good to high yields. Given
that (hetero)arenes containing a relatively acidic C-H bond
showed good efficiency, polyfluoroarenes were also antici-
2a
2a
2a
2a
(8) Recent reviews: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem.
ReV. 2007, 107, 174. (b) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200.
(c) Campeau, L. C.; Stuart, D. R.; Fagnou, K. Aldrichchim. Acta 2007, 40,
35. (d) Seregin, I. V.; Gevorgyan, V. Chem. Soc. ReV. 2007, 36, 1173. (e)
Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (f)
Lewis, L. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41,
1013. (g) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (h) Daugulis, O.;
Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (i) Kulkarni,
A. A.; Daugulis, O. Synthesis 2009, 4087. (j) Chen, X.; Engle, K. M.; Wang,
D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (k) Ackermann,
L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792. (l)
Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677. (m) Lyons,
T. W.; Sanford, M. S. Chem. ReV. 2010, 110, 1147. (n) Dudnik, A. S.;
Gevorgyan, V. Angew. Chem., Int. Ed. 2010, 49, 2096. (o) Satoh, T.; Miura,
M. Chem.sEur. J. 2010, 16, 11212. (p) Satoh, T.; Miura, M. Synthesis
2010, 3395.
7
8
9
10
Ph(CH2)2 (1g)
2a
3ga, 85
3ab, 79
3ac, 60
1a
1a
1a
1a
Ph, Ph (2b)
Me, Me (2c)
2-naphthyl, Me (2d) 3ad, 87
11
4-BrC6H4, Me (2e) 3ae, 70
a A mixture of 1 (0.60 mmol), 2 (0.40 mmol), Cu(OAc)2·OH2 (0.040
mmol), and K3PO4 (1.2 mmol) was stirred in DMF (1.0 mL) for 8-24 h at
room temperature under air. b In parentheses, yield determined by GC
method.
1). Several observations concerning optimization studies are to
be noted: the use of other copper salts, Cu(OTf)2, CuI, and
CuCl2, resulted in comparable or somewhat lower yields of 93,
95, and 72% (GC), respectively; the addition of ligands such
as 1,10-phenanthroline, 2,2′-bipyridine, and N,N,N′,N′-tetram-
ethylethylenediamine decreased the yield of 3aa by ca. 30-40%;
a combination of K3PO4 and DMF was essential for full
(9) (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem.
Soc. 2006, 128, 6790. (b) Uemura, T.; Imoto, S.; Chatani, N. Chem. Lett.
2006, 35, 842. (c) Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A.
Org. Lett. 2009, 11, 1607. (d) Wang, Q.; Schreiber, S. L. Org. Lett. 2009,
11, 5178. (e) Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew. Chem.,
Int. Ed. 2009, 48, 9127. (f) Shuai, Q.; Deng, G.; Chua, Z.; Bohle, D. S.; Li,
C.-J. AdV. Synth. Catal. 2010, 352, 632. (g) Zhao, H.; Wang, M.; Su, W.;
Hong, M. AdV. Synth. Catal. 2010, 352, 1301.
(10) Intramolecular fashion: (a) Tsang, W. C. P.; Zheng, M.; Buchwald,
S. L. J. Am. Chem. Soc. 2005, 127, 14560. (b) Thu, H.-Y.; Yu, W.-Y.;
Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048. (c) Wasa, M.; Yu, J.-Q.
J. Am. Chem. Soc. 2008, 130, 14058. (d) Jordan-Hore, A. A.; Johansson,
C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. J. Am. Chem. Soc. 2008,
130, 16184. (e) Mei, T.-S.; Wang, X.; Yu, J.-Q. J. Am. Chem. Soc. 2009,
131, 10806.
(6) (a) Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998, 39, 5731.
(b) Bolm, C.; Hildebrand, J. P. J. Org. Chem. 2000, 65, 169. (c) Bolm, C.;
Hildebrand, J. P.; Rudolph, J. Synthesis 2000, 911. (d) Bolm, C.; Cho, G. Y.;
Re´my, P.; Jansson, J.; Moessner, C. Org. Lett. 2004, 6, 3293. (e) Correa,
A.; Bolm, C. AdV. Synth. Catal. 2008, 350, 391.
(11) Attempts to apply benzimidazole, benzothiophene, or benzofuran
remained unsuccessful.
(7) Moessner, C.; Bolm, C. Org. Lett. 2005, 7, 2667.
360
Org. Lett., Vol. 13, No. 3, 2011