indium homoenolate with an aryl halide. However, owing
to the low reactivity of the indium homoenolate, our attempt
to carry out the palladium-catalyzed coupling of the indium
homoenolate with an aryl halide in THF failed. The reaction
Table 1. Screening of Organic Solventsa
(10) For other selected examples concerning the palladium-catalyzed
coupling of R3In or other types of organoindium reagents with various
electrophiles (such as aryl halide, acid chloride, benzyl halides, alkenyl
halides), see: (a) Caeiro, J.; Sestelo, J. P.; Sarandeses, L. A. Chem.sEur.
J. 2008, 14, 741. (b) Pena, M. A.; Perez, I.; Perez Sestelo, J.; Sarandeses,
L. A. Chem. Commun. 2002, 2246. (c) Nomura, R.; Miyazaki, S.-I.;
Matsuda, H. J. Am. Chem. Soc. 1992, 114, 2738. (d) Lee, P. H.; Sung, S.;
Lee, K. Org. Lett. 2001, 3, 3201. (e) Pena, M. A.; Perez Sestelo, J.;
Sarandeses, L. A. Synthesis 2003, 780. (f) Gotov, B.; Kaufmann, J.;
Schumann, H.; Schmalz, H. G. Synlett 2002, 361. (g) Jaber, N.; Gelman,
D.; Schumann, H.; Dechert, S.; Blum, J. Eur. J. Org. Chem. 2002, 1628.
(h) Lee, K.; Lee, J.; Lee, P. H. J. Org. Chem. 2002, 67, 8265. (i) Lee, K.;
Seomoon, D.; Lee, P. H. Angew. Chem., Int. Ed. 2002, 41, 3901. (j) Takami,
K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2002, 4, 2993. (k) Lee, P. H.;
Lee, S. W.; Lee, K. Org. Lett. 2003, 5, 1103. (l) Takami, K.; Mikami, S.;
Yorimitsu, H.; Shinokubo, H.; Oshima, K. J. Org. Chem. 2003, 68, 6627.
(m) Lee, P. H.; Lee, S. W.; Seomoon, D. Org. Lett. 2003, 5, 4963. (n)
Pena, M. A.; Perez Sestelo, J.; Sarandeses, L. A. Synthesis 2005, 485. (o)
Pena, M. A.; Perez Sestelo, J.; Sarandeses, L. A. J. Org. Chem. 2007, 72,
1271. (p) Font-Sanchis, E.; Cespedes-Guirao, F. J.; Sastre-Santos, A.;
Fernandez-Lazaro, F. J. Org. Chem. 2007, 72, 3589. (q) Riveiros, R.; Saya,
L.; Perez Sestelo, J.; Sarandeses, L. A. Eur. J. Org. Chem. 2008, 1959. (r)
Zhao, Y.; Jin, L.; Li, P.; Lei, A. J. Am. Chem. Soc. 2008, 130, 9429. (s)
Jin, L.; Zhao, Y.; Zhu, L.; Zhang, H.; Lei, A. AdV. Synth. Catal. 2009,
351, 630.
entry
solvent
THFc
1,4-dioxane
toluene
n-PrOHc
CH3NO2
H2O
yield (%)b
1
2
3
4
5
6
7
8
9
<5
<5
<5
<5
0
<10
85
87
78
93
NMP
DMSO
DMF
10
DMA
a Unless otherwise noted, the reactions were carried out at 100 °C for
24 h using indium homoenolate 1a (0.3 mmol), aryl iodide 2a (0.5 mmol),
PdCl2(PPh3)2 (0.025 mmol), LiCl (1 mmol), and solvent (3 mL). b Isolated
yield based on aryl iodide 2a as limiting reagent. c Under refluxing
conditions.
(11) For reviews concerning homoenolate chemistry, see: (a) Werstiuk,
N. H. Tetrahedron 1983, 39, 205. (b) Hoppe, D.; Hense, T. Angew. Chem.,
Int. Ed. 1997, 36, 2282. (c) Hoppe, D.; Marr, F.; Bruggemann, M. Top.
Organomet. Chem. 2003, 5, 61. (d) Kuwajima, I.; Nakamura, E. In
ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: New York, 1991; Vol. 2, p 441 and references cited therein. (e)
Kuwajima, I.; Nakamura, E. In Topics in Current Chemistry; Springer:
Berlin, 1990; Vol. 155, p 3.
proceeded sluggishly under the above conditions to furnish
the desired product in <5% yield. In order to circumvent
the problem, a more comprehensive study was carried out.
Herein, we report an efficient palladium-catalyzed cross-
coupling of the indium homoenolate with various aryl halides
in DMA. The reactions proceeded efficiently at 100 °C to
afford the desired products of ꢀ-aryl ketones in moderate to
good yields with wide functionality compatibility.14
Initially, various organic solvents were screened in order
to optimize the reaction conditions for the palladium-
catalyzed coupling of indium homoenolate 1a with 4-io-
doacetophenone (2a). As shown in Table 1, the coupling
reaction utilizing PdCl2(PPh3)2 (5 mol %) as a catalyst
(12) For selected examples associated with the synthesis and application
of metal homoenolates in organic synthesis by Kuwajima, Nakamura,
Yoshida, Knochel, and others, see: (a) Nakamura, E.; Kuwajima, I. J. Am.
Chem. Soc. 1977, 99, 7360. (b) Nakamura, E.; Kuwajima, I. J. Am. Chem.
Soc. 1984, 106, 3368. (c) Nakamura, E.; Shimada, J.-i.; Kuwajima, I.
Organometallics 1985, 4, 641. (d) Oshino, H.; Nakamura, E.; Kuwajima,
I. J. Org. Chem. 1985, 50, 2802. (e) Nakamura, E.; Oshino, H.; Kuwajima,
I. J. Am. Chem. Soc. 1986, 108, 3745. (f) Nakamura, E.; Kuwajima, I. J. Am.
Chem. Soc. 1985, 107, 2138. (g) Horiguehi, Y.; Nakamura, E.; Kuwajima,
I. J. Org. Chem. 1986, 51, 4323. (h) Nakamura, E.; Kuwajima, I. J. Am.
Chem. Soc. 1983, 105, 651. (i) Tamaru, Y.; Ochiai, H.; Nakamura, T.;
Yoshida, Z. Angew. Chem., Int. Ed. Engl. 1987, 26, 1157. (j) Tamaru, Y.;
Ochiai, H.; Nakamura, T.; Tsubaki, K.; Yoshida, Z. Tetrahedron Lett. 1985,
26, 5559. (k) Ochiai, H.; Tamaru, Y.; Tsubaki, K.; Yoshida, Z. J. Org.
Chem. 1987, 52, 4418. (l) Sidduri, A.; Rozema, M. J.; Knochel, P. J. Org.
Chem. 1993, 58, 2694. (m) Still, W. C. J. Am. Chem. Soc. 1978, 100, 1481.
(n) Goswami, R. J. Org. Chem. 1985, 50, 5907. (o) Cozzi, P. G.; Carofiglio,
T.; Floriani, C. Organometallics 1993, 12, 2845. For the cross-coupling
reactions of zinc homoenolates with aryl halides, see: (p) Nakamura, E.;
Aoki, S.; Sekiya, K.; Oshino, H.; Kuwajima, I. J. Am. Chem. Soc. 1987,
109, 8056. (q) Tamaru, Y.; Ochiai, H.; Nakamura, T.; Yoshida, Z.
Tetrahedron Lett. 1986, 27, 955.
Table 2. Screening of Palladium Catalystsa
(13) For reviews regarding the generation of homoenolate intermediates
with the use of nucleophilic heterocyclic carbene (NHC) catalysis, see: (a)
Nair, V.; Vellalath, S.; Babu, B. P. Chem. Soc. ReV. 2008, 37, 2691. For
recent examples, see: (b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am.
Chem. Soc. 2004, 126, 14370. (c) Burstein, C.; Glorius, F. Angew. Chem.,
Int. Ed. 2004, 43, 6205. (d) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131.
(e) Nair, V.; Vellalath, S.; Poonoth, M.; Mohan, R.; Suresh, E. Org. Lett.
2006, 8, 507. (f) Nair, V.; Poonoth, M.; Vellalath, S.; Suresh, E.; Thirumalai,
R. J. Org. Chem. 2006, 71, 8964. (g) Nair, V.; Vellalath, S.; Poonoth, M.;
Suresh, E. J. Am. Chem. Soc. 2006, 128, 8736. (h) Phillips, E. M.;
Wadamoto, M.; Chan, A.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46,
3107. (i) Chiang, P.-C.; Kaeobamrung, J.; Bode, J. W. J. Am. Chem. Soc.
2007, 129, 3520. (j) Wadamoto, M.; Phillips, E. M.; Reynolds, T. E.;
Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 10098. (k) He, M.; Bode,
J. W. J. Am. Chem. Soc. 2008, 130, 418. (l) Nair, V.; Babu, B. P.; Vellalath,
S.; Suresh, E. Chem. Commun. 2008, 747. (m) Chan, A.; Scheidt, K. A.
J. Am. Chem. Soc. 2007, 129, 5334. (n) Phillips, E. M.; Reynolds, T. E.;
Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 2416. (o) Chan, A.; Scheidt,
K. A. J. Am. Chem. Soc. 2008, 130, 2740. (p) Sohn, S. S.; Bode, J. W.
Org. Lett. 2005, 7, 3873. (q) He, M.; Struble, J. R.; Bode, J. W. J. Am.
Chem. Soc. 2006, 128, 8418.
entry
catalyst
yield (%)b
1
2
3
4
5
6
PdCl2(PPh3)2 (5 mol %)
Pd(OAc)2 (5 mol %), Me-Phos (10 mol %)
Pd(dppf)Cl2 (5 mol %)
Pd2(dba)3 (2.5 mol %), PPh3 (10 mol %)
Pd(PhCN)2Cl2 (5 mol %), PPh3 (10 mol %)
Pd(PPh3)4 (5 mol %)
93
73
76
70
76
81
a Unless otherwise noted, the reactions were carried out at 100 °C for
24 h using indium homoenolate 1a (0.3 mmol), aryl iodide 2a (0.5 mmol),
Pd cat. (0.025 mmol), phosphine ligand (0.05 mmol), LiCl (1 mmol), and
DMA (3 mL). b Isolated yield based on aryl iodide 2a as limiting reagent.
Org. Lett., Vol. 13, No. 3, 2011
423