C O M M U N I C A T I O N S
Acknowledgment. The authors thank the financial support of
the Swedish Research Council (VR). An ERASMUS stipend by
the EU for J.R.P. is greatly acknowledged.
Supporting Information Available: Detailed experimental proce-
1
dures; characterization and H and 13C NMR spectra of the products.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry;
Wiley: Chichester, 2000.
(2) Fleming, I.; Barbero, A.; Walter, D. Chem. ReV. 1997, 97, 2063.
(3) Wierschke, S. G.; Chandrasekhar, J.; Jorgensen, W. L. J. Am. Chem. Soc.
1985, 107, 1496.
(4) Hosomi, A.; Miura, K. Bull. Chem. Soc. Jpn. 2004, 77, 835.
(5) Hosomi, A.; Shirahata, A.; Sakurai, H. Tetrahedron Lett. 1978, 33, 3043.
(6) Denmark, S. E.; Werner, N. S. J. Am. Chem. Soc. 2008, 130, 16382.
(7) Hatanaka, Y.; Ebina, Y.; Hiyama, T. J. Am. Chem. Soc. 1991, 113, 7075.
(8) Hazari, A.; Gouverneur, V.; Brown, J. M. Angew. Chem., Int. Ed. 2009,
48, 1296.
(9) Thibaudeau, S.; Gouverneur, V. Org. Lett. 2003, 5, 4891.
(10) Suginome, M.; Ito, Y. Chem. ReV. 2000, 100, 3221.
(11) Horn, K. A. Chem. ReV. 1995, 95, 1317.
(12) Tsuji, Y.; Funato, M.; Ozawa, M.; Ogiyama, H.; Kajita, S.; Kawamura, T.
J. Org. Chem. 1996, 61, 5779.
Figure 2. Proposed catalytic cycle for silylation of allylic alcohols.
such a species is also promoted by electron donation from Pd(0)
to the π*-MO of the double bond, which increases the nucleophi-
licity of the oxygen atom. In complex 10 the C-O bond is
sufficiently weakened for an oxidative addition of Pd(0) to generate
allyl-palladium complex 11.
(13) Macsa´ri, I.; Hupe, E.; Szabo´, K. J. J. Org. Chem. 1999, 64, 9547.
(14) Moser, R.; Nishikata, T.; Lipshutz, B. H. Org. Lett. 2010, 12, 28.
(15) Suginome, M.; Ohmura, T.; Miyake, Y.; Mitani, S.; Ito, Y.; Murakami,
M. J. Am. Chem. Soc. 2003, 125, 11174.
(16) Wu, J. Y.; Stanzl, B. N.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 13214.
(17) Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc.
2007, 129, 12650.
In allyl-palladium complex 11 the counterion is possibly a
hypervalent silylsilane arising from the C-O bond cleavage of 10.
This silane may easily transmetalate with palladium to give complex
13. The transmetalation delivers the silyl group to palladium, which
subsequently may undergo reductive elimination without any further
activation.13 Our previous studies13 have shown that transmetalation
of disilanes to allyl-palladium complexes and the subsequent
reductive elimination proceed very fast, with the high regioselec-
tivity affording the linear allylic isomer. In the reductive elimination
mechanism, the silyl group attacks the allyl moiety from the
direction of palladium via a syn mechanism. Supposing that the
allyl-palladium complex (11) forms mainly by the usual anti
stereochemistry and the nucleophilic attack proceeds by a syn
mechanism,41,42 a predominant inversion found for silylation of
1k to 4k can be easily explained. We do not exclude the possibility
that the mechanism of the presented borylation reaction (Figure 1)
is the same. Probably, the OH-activation29 and/or transmetalation
is more efficient for the borylation process than for the silylation
reaction, which may explain a faster formation of allylboronate 6a
than that of allylsilane 4a. Exploration of the exact mechanism
requires further experimental and modeling studies.
In summary, we have presented a new, efficient procedure for
the inexpensive and environmentally benign selective synthesis of
allylsilanes from allylic alcohols. The synthetic scope involves a
wide range of substituted allylic alcohols with internal and external
double bonds and even cyclic substrates. The applied reaction
conditions provide an easy access to allylic boronates as well. By
this study we have created a common platform for the synthesis of
functionalized allylsilanes and allylboronates from allylic alcohols
and the corresponding dimetallic reagents under identical reaction
conditions. Thus, here we provide a simple and efficient route to a
broad variety of building blocks for the synthesis of complex
organic molecules including natural products.2,43-45
(18) Simon, M. O.; Martinez, R.; Geneˆt, J. P.; Darses, S. AdV. Synth. Catal.
2009, 351, 153.
(19) Shintani, R.; Ichikawa, Y.; Hayashi, T.; Chen, J.; Nakao, Y.; Hiyama, T.
Org. Lett. 2007, 9, 4643.
(20) Taylor, R. E.; Engelhardt, F. C.; Schmitt, M. J.; Yuan, H. J. Am. Chem.
Soc. 2001, 123, 2964.
(21) Terao, J.; Watabe, H.; Watanabe, H.; Kambe, N. AdV. Synth. Catal. 2004,
346, 1674.
(22) Bourque, L. E.; Cleary, P. A.; Woerpel, K. A. J. Am. Chem. Soc. 2007,
129, 12602.
(23) Tsuji, Y.; Kajita, S.; Isobe, S.; Funato, M. J. Org. Chem. 1993, 58, 3607.
(24) Oestreich, M.; Auer, G. AdV. Synth. Catal. 2005, 347, 637.
(25) Kabalka, G. W.; Venkataiah, B.; Dong, G. Organometallics 2005, 24, 762.
(26) Beletskaya, I.; Moberg, C. Chem. ReV. 2006, 106, 2320.
(27) Muzart, J. Tetrahedron 2005, 61, 4179.
(28) Tamaru, Y. Eur. J. Org. Chem. 2005, 2647.
(29) Selander, N.; Kipke, A.; Sebelius, S.; Szabo´, K. J. J. Am. Chem. Soc. 2007,
129, 13723.
(30) Sebelius, S.; Olsson, V. J.; Wallner, O. A.; Szabo´, K. J. J. Am. Chem. Soc.
2006, 128, 8150.
(31) Olsson, V. J.; Sebelius, S.; Selander, N.; Szabo´, K. J. J. Am. Chem. Soc.
2006, 128, 4588.
(32) Selander, N.; Szabo´, K. J. J. Org. Chem. 2009, 74, 5695.
(33) Selander, N.; Szabo´, K. J. Dalton Trans. 2009, 6267.
(34) Dutheuil, G.; Selander, N.; Szabo´, K. J.; Aggarwal, V. K. Synthesis 2008,
2293.
(35) Sebelius, S.; Wallner, O. A.; Szabo´, K. J. Org. Lett. 2003, 5, 3065.
(36) Sebelius, S.; Szabo´, K. J. Eur. J. Org. Chem. 2005, 2539.
(37) Selander, N.; Sebelius, S.; Estay, C.; Szabo´, K. J. Eur. J. Org. Chem. 2006,
4085.
(38) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M. Angew. Chem.,
Int. Ed. 2007, 46, 3139.
(39) Kira, M.; Sato, K.; Kabuto, C.; Sakurai, H. J. Am. Chem. Soc. 1989, 111,
3747.
(40) Kano, N.; Nakagawa, N.; Shinozaki, Y.; Kawashima, T.; Sato, Y.; Naruse,
Y.; Inagaki, S. Organometallics 2005, 24, 2823.
(41) Hartwig, J. Organotransition Metal Chemistry; University Science Books:
Sausalito, CA, 2010.
(42) Kurosawa, H.; Ogoshi, S.; Kawasaki, Y.; Murai, S.; Miyoshi, M.; Ikeda,
I. J. J. Am. Chem. Soc. 1990, 112, 2813.
(43) Gawronski, J.; Wascinska, N.; Gajewy, J. Chem. ReV. 2008, 108, 5227.
(44) Kennedy, J. W. J.; Hall, D. G. Angew. Chem., Int. Ed. 2003, 42, 4732.
(45) Denmark, S. E.; Fu, J. Chem. ReV. 2003, 103, 2763.
JA1096732
9
J. AM. CHEM. SOC. VOL. 133, NO. 3, 2011 411