pubs.acs.org/joc
acetylcholine esterase inhibitors,10 choline acetyl transferase
Synthesis and Isolation of 5,6-Dihydro-4H-1,3-
Oxazine Hydrobromides by Autocyclization of N-(3-
Bromopropyl)amides
inhibitors,11 and cardenolide analogues.12 Recently, 1,3-
benzoxazines have also found applications as stimulus re-
sponsive quantum dots,13 molecular switches,14 and detectors.15
The 5,6-dihydro-4H-1,3-oxazine hydrobromide salts 2, on
the other hand, have received much lesser attention as
electrophilic synthons in organic transformations. This is
mainly because, unlike the relatively stable 1,3-oxazines (1)
which can be synthesized from a variety of starting materials
such as ketones,16 nitriles,17 azides,18 olefins,19 ketimines,20
amido alcohols,21 amido propylbromides,22 and amino
alcohols,23 the highly reactive salts 2 can only be synthesized
in situ by reacting oxazines 1with the desired acids (Scheme 1 A).
Under these conditions however, the yields of the salts 2 are
poor and they ring open to yield 3-hydroxypropylamide and
3-aminopropylesters (3).1 Hence, a method to synthesize and
isolate the salts 2 will have several applications.
Damodara N. Reddy and Erode N. Prabhakaran*
Department of Organic Chemistry, Indian Institute of Science,
Bangalore, India 560012.
Received October 15, 2010
We envisioned that, if the amide carbonyl in amides 4 is
rendered sufficiently nucleophilic to undergo an autocyclo-
O-alkylation reaction (Scheme 1 B) under neutral condi-
tions, then the in situ generated hydrobromic acid can be
trapped by the resulting 1,3-oxazines (1) to yield the desired
salts 2. This may be best achieved in a nonpolar solvent such
as chloroform. In this endeavor, we synthesized the benza-
1
mide 4g (Table 1) and monitored its H NMR in CDCl3
5,6-Dihydro-4H-1,3-oxazine hydrobromides have been
synthesized by the nucleophilic autocyclo-O-alkylation
of N-(3-bromopropyl)amides under neutral conditions in
chloroform. It is found that electron-donating amide R-
substituents influence the autocyclization efficiency.
(60 mM) as a function of time. Indeed, 4g was converted
exclusively to 2g (Scheme 2), following first-order kinetics as
expected for an intramolecular nucleophilic cyclization reaction.
(12) Hewitt, M.; Schneider, T. R.; Szemeredi, Z.; Hajnal, A.; Wolfling, J.;
Schneider, G. Acta Crystallogr., Sect. C 2000, 56, e363–e364.
(13) Tomasulo, M.; Yildiz, I.; Raymo, F. M. J. Phys. Chem. B 2006, 110,
3853–3855.
(14) Pennakalathil, J.; Kim, T.-H.; Kim, K.; Woo, K.; Park, J.-K.; Hong,
J.-D. Langmuir 2010, 26, 11349–11354.
(15) Tomasulo, M.; Sortino, S.; White, A. J. P.; Raymo, F. M. J. Org.
Chem. 2006, 71, 744–753.
(16) Vovk, M. V.; Golovach, N. M.; Sukach, V. A. J. Fluorine Chem.
2010, 131, 229–233.
(17) Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.;
Mirkhani, V.; Eskandari, Z. Ultrason. Sonochem. 2010, 17, 857–862.
(18) (a) Badiang, J. G.; Aube, J. J. Org. Chem. 1996, 61, 2484–2487.
(b) Monneret, C.; Choay, P.; Khuong-Huu, Q. Tetrahedron 1975, 31, 575–
578.
5,6-Dihydro-4H-1,3-oxazines (1) are important interme-
diates for the synthesis of a broad range of synthons1 such as
bicyclic heterocycles,2 and pyrroles,3 ring-opened products
such as 3-aminopropylester,4 aldehydes,5 R-amido alde-
hydes,6 ketimines,7and olefins,3 and polymers8 such as pen-
dant-type and main-chain polyamides and polyamines.9
There has been considerable interest in this motif due to its
presence in several biologically active compounds such as
(19) (a) Pham, V.-T.; Joo, J.-E.; Lee, K.-Y.; Kim, T.-W.; Mu, Y.; Ham,
W.-H. Tetrahedron 2010, 66, 2123–2131. (b) Katritzky, A. R.; Shcherbakova,
I. V.; Tack, R. D.; Dai, X.-Q. Tetrahedron 1993, 49, 3907–3918.
(1) (a) Schmidt, R. R. Synthesis 1972, 1972, 333–350. (b) Wipf, P.; Hayes,
G. B. Tetrahedron 1998, 54, 6987–6998.
(2) Seeliger, W.; Aufderhaar, E.; Diepers, W.; Feinauer, R.; Nehring, R.;
Thier, W.; Hellmann, H. Angew. Chem., Int. Ed. Engl. 1966, 5, 875–888.
(3) Narwid, T. A.; Meyers, A. I. J. Org. Chem. 1974, 39, 2572–2574.
ꢀ
ꢀ
(20) Alajarın, M.; Ortın, M.-M.; Sanchez-Andrada, P.; Vidal, A. J. Org.
´ ´
Chem. 2006, 71, 8126–8139.
(21) (a) Metaferia, B. B.; Fetterolf, B. J.; Shazad-ul-Hussan, S.; Moravec,
M.; Smith, J. A.; Ray, S.; Gutierrez-Lugo, M.-T.; Bewley, C. A. J. Med.
€
(4) Braun, H. A.; Zall, A.; Brockhaus, M.; Schutz, M.; Meusinger, R.;
ꢀ
ꢁ
Schmidt, B. Tetrahedron Lett. 2007, 48, 7990–7993.
(5) (a) Malone, G. R.; Meyers, A. I. J. Org. Chem. 1974, 39, 623–628.
(b) Savoia, D.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. 1978, 43,
2907–2910.
(6) Gizecki, P.; Dhal, R.; Toupet, L.; Dujardin, G. Org. Lett. 2000, 2,
585–588.
Chem. 2007, 50, 6326–6336. (b) Dieguez, M.; Pamies, O. Chem.;Eur. J.
2008, 14, 3653–3669. (c) Petersson, M. J.; Jenkins, I. D.; Loughlin, W. A.
Org. Biomol. Chem. 2009, 7, 739–746.
(22) (a) Orelli, L. R.; Salerno, A.; Hedrera, M. E.; Perillo, I. A. Synth.
Commun. 1998, 28, 1625–1639. (b) Dai, L.; Chen, F.-E.; Chen, M.-Q. Acta
Crystallogr., Sect. E 2007, 63, o2365–o2366. (c) Zioudrou, C.; Schmir, G. L.
J. Am. Chem. Soc. 1963, 85, 3258–3264. (d) Ella-Menye, J.-R.; Wang, G.
Tetrahedron 2007, 63, 10034–10041.
(7) Meyers, A. I.; Smith, E. M.; Ao, M. S. J. Org. Chem. 1973, 38, 2129–
2136.
(8) Culbertson, B. M. Prog. Polym. Sci. 2002, 27, 579–626.
(9) (a) Hu, L.; Frech, R.; Glatzhofer, D. T.; Mason, R.; York, S. S. Solid
State Ionics 2008, 179, 401–408. (b) Brunel, S.; Chevalier, Y.; Le Perchec, P.
Tetrahedron 1989, 45, 3363–3370. (c) Saegusa, T.; Kobayashi, S.; Nagura, Y.
Macromolecules 1974, 7, 272–277.
(10) Sauvaıtre, T.; Barlier, M.; Herlem, D.; Gresh, N.; Chiaroni, A.;
Guenard, D.; Guillou, C. J. Med. Chem. 2007, 50, 5311–5323.
(11) Mehta, N. B.; Musso, D. L.; White, H. L. Eur. J. Med. Chem. 1985,
20, 443–446.
(23) (a) Schwekendiek, K.; Glorius, F. Synthesis 2006, 2006, 2996–3002.
(b) Karade, N. N.; Tiwari, G. B.; Gampawar, S. V. Synlett 2007, 2007, 1921–
1924.
(24) T1/2 were determined by following the time-dependent disappearance
of the triplet for -CH2-Br (in 4) at δ ≈ 3.40 ( 0.2 ppm and the simultaneous
growth of the triplet for -CH2-O- (in 2) at δ ≈ 4.60 ( 0.2 ppm in the 1H NMR
spectra.
(25) There is a dead time error of 20-30 min due to the time taken to
prepare the sample and acquire the FID.
680 J. Org. Chem. 2011, 76, 680–683
Published on Web 12/21/2010
DOI: 10.1021/jo101955q
r
2010 American Chemical Society