Article
Organometallics, Vol. 30, No. 3, 2011 573
[C,N] palladacycles permitted intriguing insertion reactions
with small molecules such as alkynes, alkenes, alkyl/aryl iso-
cyanides, and CO to afford a wide range of organopalladium
intermediates that upon depalladation were shown to afford
various nitrogen heterocycles and carbocycles.2,3b,c,j,8 [C,N] Pal-
ladacycles with ring size from four to 11 are known, and among
these, the five-membered [C,N] palladacycles are by far the most
thoroughly studied system.
Six-membered [C,N] palladacycles are less well studied
than their five-membered counterparts, and the scarcity of
the former was believed to be due to their lesser stability as
compared with the latter.9 Examples of six-membered [C,N]
palladacycles have become more common recently,8c,9c,10-13
but still remain relatively rare. Some six-membered [C,N]
palladacycles were proven as excellent precatalysts for C-C
and C-heteroatom bond-forming reactions.10f,j,m,q,r,11b,e,j,13
Moreover, the six-membered [C,N] palladacycle skeleton
was often encountered as intermediate species in stoichio-
metric3b,j,14 and catalytic15 organic transformations mediated
by palladium.
Recently, we reported a one-pot synthesis for a series
of N,N0,N00-triarylguanidines and studied their conforma-
tional features by NMR and X-ray diffraction data.16 We set
out to study the cyclopalladation reactions of N,N0,N00-tris-
(2-anisyl)guanidine, (ArNH)2CdNAr (Ar=2-(MeO)C6H4;
LH22-anisyl) with Pd(OC(O)R)2 (R = Me, CF3) to investi-
gate how the intrinsic basic and 2-anisyl substituent in the
guanidine influence the solid-state and solution structures and
the reactivity pattern of the resulting guanidine palladacycles.
From such an endeavor, guanidine palladacycles [Pd{κ2-
(C,N)-C6H3(OMe)-3(NHC(NHAr)(dNAr))-2}(μ-X)]2 (Ar =
2-(MeO)C6H4; X=OC(O)R (R=Me (1a), CF3 (1b), and Br
(2)), [Pd{κ2(C,N)-C6H3(OMe)-3(NHC(NHAr)(dNAr))-2}Br-
(L)] (L = 2,6-Me2C5H3N (3a), 2,4-Me2C5H3N (3b), 3,5-
Me2C5H3N (3c), XyNC (4a), tBuNC (4b), and PPh3 (5)), and
[Pd{κ2(C,N)-C(dNXy)(C6H3(OMe)-4)-2(NdC(NHAr)2)-
3}Br(CNXy)] (Xy = 2,6-Me2C6H3; 6) shown in Chart 1 were
isolated, and the structures and solution dynamics of represen-
tative palladacycles were studied by X-ray diffraction data
and variable-temperature (VT) 1H NMR data. The molecular
structure of the partly cyclopalladated complex of N,N0,N00-
(8) (a) Pfeffer, M. Pure Appl. Chem. 1992, 64, 335–342. (b) Pfeffer, M.
Recl. Trav. Chim. Pays-Bas 1990, 109, 567–576. (c) Vicente, J.; Saura-
ꢀ
Llamas, I.; García-Lopez, J.-A.; Bautista, D. Organometallics 2010, 29,
4320–4338.
(9) (a) Bosque, R.; Maseras, F. Eur. J. Inorg. Chem. 2005, 4040–4047.
ꢀ
(b) Gomez, M.; Granell, J.; Martinez, M. J. Chem. Soc., Dalton Trans. 1998,
37–44. (c) Alonso, M. T.; Juanes, O.; de Mendoza, J.; Rodriguez-Ubis, J. C.
J. Organomet. Chem. 1994, 484, 19–26.
ꢀ
ꢀ ꢀ
(10) (a) Vazquez-Garcıa, D.; Fernandez, A.; Lopez-Torres, M.;
´
ꢀ ꢀ
Rodrıguez, A.; Gomez-Blanco, N.; Viader, C.; Vila, J. M.; Fernandez,
´
J. J. Organometallics 2010, 29, 3303–3307. (b) Roiban, G.-D.; Serrano, E.;
Soler, T.; Contel, M.; Grosu, I.; Cativiela, C.; Urriolabeitia, E. P. Organo-
metallics 2010, 29, 1428–1435. (c) Roiban, D.; Serrano, E.; Soler, T.; Grosu,
I.; Cativiela, C.; Urriolabeitia, E. P. Chem. Commun. 2009, 4681–4683.
(d) Hajipour, A. R.; Karami, K.; Pirisedigh, A.; Ruoho, A. E. Amino Acids
2009, 37, 537–541. (e) Vicente, J.; Saura-Llamas, I.; Turpín, J.; Bautista, D.;
Ramirez de Arellano, C.; Jones, P. G. Organometallics 2009, 28, 4175–4195.
(f) Fors, B. P.; Davis, N. R.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131,
5766–5768. (g) Stepanova, V. A.; Dunina, V. V.; Smoliakova, I. P. Organo-
metallics 2009, 28, 6546–6558. (h) Chitanda, J. M.; Quail, J. W.; Foley, S. R.
J. Organomet. Chem. 2009, 694, 1542–1548. (i) Vicente, J.; Saura-Llamas,
ꢀ
I.; García-Lopez, J.-A.; Bautista, D. Organometallics 2009, 28, 448–464. (j)
Hajipour, A. R.; Karami, K.; Pirisedigh, A.; Ruoho, A. E. J. Organomet. Chem.
2009, 694, 2548–2554. (k) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q.
Angew. Chem., Int. Ed. 2008, 47, 4882–4886. (l) Peng, K.-F.; Chen, M.-T.;
Huang, C.-A.; Chen, C.-T. Eur. J. Inorg. Chem. 2008, 2463–2470. (m)
Chitanda, J. M.; Prokopchuk, D. E.; Quail, J. W.; Foley, S. R. Dalton Trans.
2008, 6023–6029. (n) Mawo, R. Y.; Johnson, D. M.; Wood, J. L.; Smoliakova,
I. P. J. Organomet. Chem. 2008, 693, 33–45. (o) Aguilar, D.; Bielsa, R.; Contel,
ꢀ
M.; Lledos, A.; Navarro, R.; Soler, T.; Urriolabeitia, E. P. Organometallics
2008, 27, 2929–2936. (p) Zhou, J.; Wang, Q.; Sun, H. Acta Crystallogr. 2008,
E64, m688. (q) Zhang, T.-K.; Mo, D.-L.; Dai, L.-X.; Hou, X.-L. Org. Lett.
2008, 10, 5337–5340. (r) Biscoe, M. R.; Fors, B. P.; Buchwald, S. L. J. Am.
Chem. Soc. 2008, 130, 6686–6687. (s) Tjosaas, F.; Fiksdahl, A. J. Organomet.
Chem. 2007, 692, 5429–5439. (t) Brown, G. M.; Elsegood, M. R. J.; Lake, A. J.;
Sanchez-Ballester, N. M.; Smith, M. B.; Varley, T. S.; Blann, K. Eur. J. Inorg.
Chem. 2007, 1405–1414. (u) Zhang, T.-K.; Yuan, K.; Hou, X.-L. J. Organo-
met. Chem. 2007, 692, 1912–1919. (v) Vicente, J.; Saura-Llamas, I.; García-
ꢀ
Lopez, J.-A.; Calmuschi-Cula, B.; Bautista, D. Organometallics 2007, 26,
ꢀ
2768–2776. (w) Albert, J.; Cadena, J. M.; Gonzalez, A.; Granell, J.; Solans, X.;
Font-Bardia, M. Chem.;Eur. J. 2006, 12, 887–894.
(11) (a) Albert, J.; Granell, J.; Zafrilla, J.; Font-Bardia, M.; Solans,
X. J. Organomet. Chem. 2005, 690, 422–429. (b) Chen, C. L.; Liu, Y.-H.;
Peng, S.-M.; Liu, S.-T. Organometallics 2005, 24, 1075–1081. (c) Chen,
C.-L.; Liu, Y. H.; Peng, S.-M.; Liu, S.-T. Tetrahedron Lett. 2005, 46, 521–
523. (d) Vicente, J.; Saura-Llamas, I.; Bautista, D. Organometallics 2005, 24,
6001–6004. (e) Yuan, K.; Zhang, T. K.; Hou, X. L. J. Org. Chem. 2005, 70,
6085–6088. (f) Cowley, A. R.; Cooper, R. I.; Capito, E.; Brown, J. M.; Ricci,
A. Acta Crystallogr. 2005, E60, m582–m584. (g) Vicente, J.; Saura-Llamas,
I.; Cuadrado, J.; Ramirez de Arellano, M. C. Organometallics 2003, 22,
ꢀ
(12) (a) Albert, J.; Gomez, M.; Granell, J.; Sales, J.; Solans, X.
Organometallics 1990, 9, 1405–1413. (b) Dupont, J.; Pfeffer, M.; Daran,
J.-C.; Gouteron, J. J. Chem. Soc., Dalton Trans. 1988, 2421–2429.
(c) Dorokhov, V. A.; Cherkasova, K. L.; Lutsenko, A. I. Bull. Acad. Sci.
USSR Div. Chem. Sci. (Engl. Transl.) 1987, 36, 2179–2181. (d) Ceder,
R. M.; Granell, J.; Sales, J. J. Organomet. Chem. 1986, 307, C44–C46.
(e) Canty, A. J.; Minchin, N. J.; Skelton, B. W.; White, A. H. J. Chem. Soc.,
Dalton Trans. 1986, 2205–2210. (f) Albert, J.; Granell, J.; Sales, J.; Solans,
X.; Font-Altaba, M. Organometallics 1986, 5, 2567–2568. (g) Polyakov,
V. A.; Ryabov, A. D. J. Chem. Soc., Dalton Trans. 1986, 589–593.
(h) Fuchita, Y.; Hiraki, K.; Uchiyama, T. J. Chem. Soc., Dalton Trans.
1983, 897–899. (i) Fuchita, Y.; Hiraki, K.; Kage, Y. Bull. Chem. Soc. Jpn.
1982, 55, 955–956. (j) Nonoyama, M. Trans. Met. Chem. 1982, 281–284.
(k) Hiraki, K.; Fuchita, Y.; Takechi, K. Inorg. Chem. 1981, 20, 4316–4320.
(l) Cameron, N. D.; Kilner, M. J. Chem. Soc., Chem. Commun. 1975, 687–
688.
ꢀ
5513–5517. (h) Albert, J.; Cadena, J. M.; Gonzalez, A.; Granell, J.; Solans,
X.; Font-Bardia, M. Chem. Commun. 2003, 528–529. (i) Bolm, C.; Wenz,
K.; Raabe, G. J. Organomet. Chem. 2002, 662, 23–33. (j) Schnyder, A.;
Indolese, A. F.; Studer, M.; Blaser, H.-U. Angew. Chem., Int. Ed. 2002, 41,
ꢀ
3668–3671. (k) Albert, J.; Cadena, J. M.; Gonzalez, A.; Granell, J.; Solans,
X.; Font-Bardia, M. J. Organomet. Chem. 2002, 663, 277–283. (l) Albert, J.;
Bosque, R.; Granell, J.; Tavera, R. J. Organomet. Chem. 2000, 595, 54–58.
(m) de Geest, D. J.; O'Keefe, B. J.; Steel, P. J. J. Organomet. Chem. 1999,
579, 97–105. (n) O'Keefe, B. J.; Steel, P. J. Inorg. Chem. Commun. 1999, 2,
ꢀ
10–13. (o) Benito, M.; Lopez, C.; Morvan, X. Polyhedron 1999, 18, 2583–
(13) (a) Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440–
1449. (b) Broggi, J.; Clavier, H.; Nolan, S. P. Organometallics 2008, 27,
5525–5531, and references therein.
2595. (p) Tollari, S.; Cenini, S.; Tunice, C.; Palmisano, G. Inorg. Chim. Acta
1998, 272, 18–23. (q) Albert, J.; Granell, J.; Luque, A.; Font-Bardía, M.;
Solans, X. J. Organomet. Chem. 1997, 545, 131–137. (r) Gomez, M.;
Granell, J.; Martinez, M. Organometallics 1997, 16, 2539–2546. (s) Vicente,
J.; Saura-Llamas, I.; Palin, M. G.; Jones, P. G.; Ramirez de Arellano, M. C.
Organometallics 1997, 16, 826–833. (t) Albert, J.; Granell, J.; Luque, A.;
Mínguez, J.; Moragas, R.; Font-Bardía, M.; Solans, X. J. Organomet. Chem.
1996, 522, 87–95. (u) Fuchita, Y.; Yoshinaga, K.; Kusaba, H.; Mori, M.;
Hiraki, K.; Takehara, K. Inorg. Chim. Acta 1995, 239, 125–132. (v) De
Munno, G.; Ghedini, M.; Neve, F. Inorg. Chim. Acta 1995, 239, 155–158.
(w) Bosque, R.; Lopez, C.; Sales, J.; Tramuns, D.; Solans, X. J. Chem. Soc.,
Dalton Trans. 1995, 2445–2452. (x) Barro, J.; Granell, J.; Sainz, D.; Sales,
J.; Font-Bardia, M.; Solans, X. J. Organomet. Chem. 1993, 456, 147–154.
(y) Hiraki, K.; Nakashima, M.; Uchiyama, T.; Fuchita, Y. J. Organomet.
ꢀ
(14) (a) Barker, J.; Cameron, N. D.; Kilner, M.; Mohmoud, M. M.;
Wallwork, S. C. J. Chem. Soc., Dalton Trans. 1991, 3435–3445. (b) Chao,
C. H.; Hart, D. W.; Bau, R.; Heck, R. F. J. Organomet. Chem. 1979, 179,
301–309. (c) Thompson, J. M.; Heck, R. F. J. Org. Chem. 1975, 40, 2667–
2674.
€
(15) (a) Neumann, J. J.; Rakshit, S.; Droge, T.; Glorius, F. Angew.
Chem., Int. Ed. 2009, 48, 6892–6895. (b) Tan, Y.; Harwig, J. F. J. Am.
Chem. Soc. 2010, 132, 3676–3677. (c) Orito, K.; Miyazawa, M.; Nakamura,
T.; Horibata, A.; Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita, S.;
Yamazaki, T.; Tokuda, M. J. Org. Chem. 2006, 71, 5951–5958. (d) Orito, K.;
Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.; Yuguchi, M.;
Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004, 126, 14342–14343.
(16) Gopi, K.; Rathi, B.; Thirupathi, N. J. Chem. Sci. 2010, 122,
157–167.
ꢀ
ꢀ
ꢀ
Chem. 1992, 428, 249–258. (z) Albert, J.; Ceder, R. M.; Gomez, M.; Granell,
J.; Sales, J. Organometallics 1992, 11, 1536–1541.