Synthesis of Propiolic Acids via Copper-Catalyzed Insertion of Carbon Dioxide
was futher extracted with ethyl acetate (3ꢂ20.0 mL). The
combined organic layers were washed with a dilute aqueous
solution of LiCl and brine, dried over MgSO4, filtered and
the volatiles were removed under vacuum to afford the cor-
responding acids 3b, 3h–p which were further purified by re-
crystallization from H2O and EtOH.
804–807; d) J. Li, H. Jiang, M. Chen, Synth. Commun.
2001, 31, 199–202; e) Y. Izawa, I. Shimizu, A. Yama-
moto, Bull. Chem. Soc. Jpn. 2004, 77, 2033–2045; f) L.
Kollꢄr, Modern Carbonylation Reactions, Wiley-VCH,
Weinheim, 2008, pp 276–280.
[5] a) T. Mizuno, H. Alper, J. Mol. Catal. A: Chemical
1997, 123, l–24; b) H. Arzoumanian, F. Cochini, D.
Nuel, J. F. Petrignani, N. Rosas, Organometallics 1992,
11, 493–495.
Preparative-Scale Synthesis of 1-a-Nonynoic Acid
(3a)
[6] L. Brandsma, Preparative Acetylenic Chemistry, 2nd
edn., Elsevier, Amsterdam, 1998.
An oven-dried, nitrogen-flushed, 100-mL vessel was charged
with
(4,7-diphenyl-1,10-phenanthroline)bis(triphenylphos-
[7] For a review, see: S. N. Riduan, Y. Zhang, Dalton
phine)copper(I) nitrate (I) (590 mg, 0.60 mmol) and cesium
carbonate (11.7 g, 36.0 mmol). Under a nitrogen atmos-
phere, degassed DMF (50 mL) was added, and the mixture
was stirred at room temperature for 5 min. After flushing
the reaction vessel three times with CO2, 1-octyne 1a
(4.47 mL, 30.0 mmol) was added via syringe. The resulting
mixture was stirred at 508C under an ambient CO2 pressure
for 16 h. Once the reaction was complete, the mixture was
cooled to room temperature, diluted with H2O and extract-
ed with n-hexane (3ꢂ20 mL). The aqueous layer was then
acidified with aqueous HCl (1N, 100 mL) and extracted
with ethyl acetate (3ꢂ60 mL). The combined organic layers
were washed with a dilute aqueous LiCl solution and brine,
dried over MgSO4, filtered, and the volatiles were removed
under vacuum. The residue was purified by filtration over
silica gel (500 mg) eluting with ethyl acetate/hexane 1:5, to
afford 3a as a colorless oil; yield: 4.6 g (97%). The spectro-
scopic data (NMR, IR) matched those reported in the litera-
ture for 1-a-nonyoic acid (3a) [CAS: 1846–70–4].
Trans. 2010, 39, 3347–3357.
[8] a) T. Sakakura, K. Kohon, Chem. Commun. 2009,
1312–1330; b) T. Sakakura, J.-C. Choi, H. Yasuda,
Chem. Rev. 2007, 107, 2365–2387; c) N. Eghbali, C.-J.
Li, Green Chem. 2007, 9, 213–215; d) H. Arakawa
et al., Chem. Rev. 2001, 101, 953–996.
[9] A. Correa, R. Martꢀn, Angew. Chem. 2009, 121, 6317–
6320; Angew. Chem. Int. Ed. 2009, 48, 6201–6204.
[10] a) O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem.
Res. 2009, 42, 1074–1086; b) D. Balcells, E. Clot, O. Ei-
senstein, Chem. Rev. 2010, 110, 749–823.
[11] P. Siemsen, R. C. Livingston, F. Diederich, Angew.
Chem. 2000, 112, 2740–2767; Angew. Chem. Int. Ed.
2000, 39, 2632–2657.
[12] K. Sonogashira, E.-I. Negishi, (Eds.), Handbook of Or-
ganopalladium Chemistry for Organic Synthesis, Wiley-
VCH, New York, 2004; pp 493–529.
[13] D. Boyall, D. E. Frantz, E. M. Carreira, Org. Lett. 2002,
4, 2605–2606.
For full experimental procedures, see the Supporting In-
[14] T. Tsuda, K. Ueda, T. Saegusa, J. Chem. Soc. Chem.
Commun. 1974, 380–381.
formation.
[15] a) T. Tsuda, K. Ueda, T. Saegusa, J. Chem. Soc. Chem.
Commun. 1975, 963–964; b) Y. Fukue, S. Oi, Y. Inoue,
J. Chem. Soc. Chem. Commun. 1994, 2091.
Acknowledgements
[16] a) L. J. Gooßen, N. Rodrꢀguez, K. Gooßen, Angew.
Chem. 2008, 120, 3144–3164; Angew. Chem. Int. Ed.
2008, 47, 3100–3120; b) L. J. Gooßen, N. Rodrꢀguez, C.
Linder, J. Am. Chem. Soc. 2008, 130, 15248–15249;
c) L. J. Gooßen, C. Linder, N. Rodrꢀguez, P. P. Lange,
Chem. Eur. J. 2009, 15, 9336–9349; d) L. J. Gooßen, N.
Rodrꢀguez, P. P. Lange, C. Linder, Angew. Chem. 2010,
122, 1129–1132; Angew. Chem. Int. Ed. 2010, 49, 1111–
1114; e) L. J. Gooßen, P. P. Lange, N. Rodrꢀguez, C.
Linder, Chem. Eur. J. 2010, 16, 3906–3909.
[17] a) L. J. Gooßen, W. R. Thiel, N. Rodrꢀguez, C. Linder,
B. Melzer, Adv. Synth. Catal. 2007, 349, 2241–2246;
b) L. J. Gooßen, F. Manjolinho, B. A. Khan, N. Rodrꢀ-
guez, J. Org. Chem. 2009, 74, 2620–2623; c) L. J.
Gooßen, N. Rodrꢀguez, C. Linder, P. P. Lange, A.
Fromm, ChemCatChem. 2010, 2, 430–442.
We thank the Deutsche Forschungsgemeinschaft and Nano-
Kat for funding, and the A.-von-Humboldt Foundation for a
scholarship to N.R.
References
[1] a) B. M. Trost, F. D. Toste, K. Greenman, J. Am. Chem.
Soc. 2003, 125, 4518–4526; b) T. Kitamura, Eur. J. Org.
Chem. 2009, 1111–1125; c) M. Bararjanian, S. Balalaie,
F. Rominger, B. Movassagh, H. R. Bijanzadeh, J. Org.
Chem. 2010, 75, 2806–2812.
[2] a) J. Moon, M. Jeong, H. Nam, J. Ju, J. H. Moon, H. M.
Jung, S. Lee, Org. Lett. 2008, 10, 945–948; b) J. Moon,
M. Jang, S. Lee, J. Org. Chem. 2009, 74, 1403–1406;
c) W. Jia, N. Jiao, Org. Lett. 2010, 12, 2000–2003.
[3] a) W. Reppe, Liebigs Ann. Chem. 1955, 596, 25–32;
b) J. Stohrer, E. Fritz-langhals, C. Brꢃninghaus, U.S.
Patent 7,173,149B2, 2007.
[18] S. Oi, K. Nemoto, S. Matsuno, Y. Inoue, Macromol.
Rapid Commun. 1994, 15, 133–137.
[19] I. I. F. Boogaerts, S. P. Nolan, J. Am. Chem. Soc. 2010,
132, 8858–8859.
[20] For transition metal-free carboxylations, see: O.
Vechorkin, N. Hirt, X. Hu, Org. Lett. 2010, 12, 3567–
3569.
[4] a) J. Tsuji, M. Takahashi, T. Takahashi, Tetrahedron
Lett. 1980, 21, 849; b) E. R. H. Jones, G. H. Whitham,
M. C. Whiting, J. Chem. Soc. 1957, 4628–4633; c) N.
Satyanarayana, H. Alper, Organometallics 1991, 10,
Adv. Synth. Catal. 2010, 352, 2913 – 2917
ꢁ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2917