ORGANIC
LETTERS
2010
Vol. 12, No. 7
1396-1399
Highly Diastereoselective Synthesis of
Substituted Pyrrolidines Using a
Sequence of Azomethine Ylide
Cycloaddition and Nucleophilic Cyclization
Guillaume Be´langer,* Ve´ronique Darsigny, Michae¨l Dore´, and Franc¸ois Le´vesque
De´partement de Chimie, UniVersite´ de Sherbrooke, 2500 BouleVard UniVersite´,
Sherbrooke, Que´bec J1K 2R1, Canada
Received December 3, 2009
ABSTRACT
Although cycloadditions of azomethine ylides usually give mixtures of endo/exo adducts, we successfully tuned the mechanistic path of a
new reaction cascade to afford substituted pyrrolidines in high yields and diastereomeric purity. This was achieved by forcing the demetalation
of tin- or silicon-substituted iminium ions, followed by azomethine ylide cycloaddition and nucleophilic cyclization. Structural complexity is
thus built rapidly in a fully controlled one-pot reaction cascade.
1,3-Dipolar cycloaddition of azomethine ylides is recognized
as one of the best ways to prepare pyrrolidines.1,2 The reaction
has been extensively used for their generation, and its
exploitation has been documented in very nice and efficient
syntheses of alkaloids.3 Unfortunately, for substituted pyr-
rolidines, this method usually gives mixtures of endo and
exo cycloadducts, especially in intermolecular cycloaddi-
tions.4 To get around this serious limitation, many reported
cases fell back to the use of functional groups or conforma-
tional restriction to advantageously bias the diastereoselec-
tivity of the cycloaddition; these biased systems often restrain
applications to precise substitution patterns in the resulting
pyrrolidines.
(1) For a selection of reviews on the methods for the preparation of
azomethine ylides and their 1,3-dipolar cycloadditions, see: (a) Coldham,
I.; Hufton, R. Chem. ReV. 2005, 105, 2765. (b) Harwood, L. M.; Vickers,
R. J. In Synthetic Applications of 1.3-Dipolar Cyaloaddition Chemistry
Toward Heterocycles and Natural Products; Padwa, A., Pearson, W. H.,
Eds.; Wiley: New York, 2003; pp 169-252. (c) Vedejs, E.; West, F. G.
(3) For a selection of recent examples, see: (a) Pandey, G.; Gupta, N. R.;
Pimpalpalle, T. M. Org. Lett. 2009, 11, 2547. (b) Burrell, A. J. M.; Coldham,
I.; Oram, N. Org. Lett. 2009, 11, 1515. (c) Burrell, A. J. M.; Coldham, I.;
Watson, L.; Oram, N.; Pilgram, C. D.; Martin, N. G. J. Org. Chem. 2009,
74, 2290. (d) Carra, R. J.; Epperson, M. T.; Gin, D. Y. Tetrahedron 2008,
64, 3629. (e) Coldham, I.; Burrell, A. J. M.; White, L. E.; Adams, H.; Oram,
N. Angew. Chem., Int. Ed. 2007, 46, 6159. (f) Pearson, W. H.; Kropf, J. E.;
Choy, A. L.; Lee, Y.; Kampf, J. W. J. Org. Chem. 2007, 72, 4135. (g)
Epperson, M. T.; Gin, D. Y. Angew. Chem., Int. Ed. 2002, 41, 1778.
(4) For example, see ref 2f,g and: (a) Coldham, I.; Jana, S.; Watson,
L.; Pilgram, C. D. Tetrahedron Lett. 2008, 49, 5408. (b) Alker, D.; Harwood,
L. M.; Williams, C. E. Tetrahedron 1997, 53, 12671. (c) Roussi, G.; Zhang,
J. Tetrahedron 1991, 47, 5161. (d) Grigg, R.; Heaney, F. J. Chem. Soc.,
Perkin Trans. 1 1989, 198. (e) Grigg, R.; Surendrakumar, S.; Thianpatana-
gul, S.; Vipond, D. J. Chem. Soc., Chem. Commun. 1987, 47.
Chem. ReV. 1986, 86, 941
.
(2) For the gerenation of unstabilized azomethine ylides from demeta-
lation of (trimethylsilyl)methyl- or (tributylstannyl)methyliminium ions, see
ref 1 and: (a) Vedejs, E.; Martinez, G. R. J. Am. Chem. Soc. 1979, 101,
6452. (b) Achiwa, K.; Sekiya, M. Chem. Lett. 1981, 1213. (c) Achiwa, K.;
Motoyama, T.; Sekiya, M. Chem. Pharm. Bull. 1983, 31, 3939. (d) Padwa,
A.; Chen, Y. Tetrahedron Lett. 1983, 24, 3447. (e) Padwa, A.; Chen, Y.;
Dent, W.; Nimmesgern, H. J. Org. Chem. 1985, 50, 4006. (f) Pearson,
W. H.; Mi, Y. Tetrahedron Lett. 1997, 38, 5441. (g) Pearson, W. H.; Stoy,
P.; Mi, Y. J. Org. Chem. 2004, 69, 1919
.
10.1021/ol902767b 2010 American Chemical Society
Published on Web 03/01/2010