V. U. Pawar et al. / Bioorg. Med. Chem. Lett. 20 (2010) 7243–7245
7245
Table 1
In vitro anticancer activity of compound 5 on P388D1, COLO-205, Zr-75-1, HL60 and HeLa
Sample (
lg/ml) 5
% Inhibition on various cell lines
Zr-75-1
P388D1
COLO-205
HL60
HeLa
100
80
60
40
20
10
5
45.06 1.06
40.00 0.64
38.27 3.21
37.65 3.56
35.18 1.06
31.48 1.42
27.78 0.71
55.39 0.06
69.29 0.60a
50.66 0.76
43.61 0.25
37.88 0.23
37.44 1.27
36.12 0.76
35.68 1.53
29.51 0.18
51.26 0.39
49.03 0.74
43.22 2.23
40.00 0.37
38.70 0.02
36.77 1.12
30.96 0.37
28.38 0.74
53.21 0.46
62.42 0.46a
40.97 0.20
38.98 0.26
33.97 0.32
31.31 0.27
31.27 0.29
23.44 0.32
56.48 0.12
a
65.35 0.45
35.95 0.47
25.45 0.76
22.83 0.30
16.79 0.31
09.18 0.90
56.27 0.71
Mitomycinb
The data is indicated as the mean SEM (n = 3).
a
Denoting more significant value (P < 0.05).
Concentration of mitomycin used was 5 lg/ml.
b
Table 2
In vitro anticancer activity of compound 6 on P388D1, COLO-205, Zr-75-1, HL60 and HeLa
Sample (
lg/ml) 6
% Inhibition on various cell lines
Zr-75-1
P388D1
COLO-205
HL60
HeLa
100
80
60
40
20
10
5
52.46 0.71
40.74 0.35
40.12 0.73
34.56 1.08
31.48 2.14
25.92 1.78
10.49 0.61
55.39 0.06
75.85 0.75a
42.29 1.02
38.32 0.50
37.00 0.53
36.56 0.56
35.24 0.00
33.03 0.25
20.95 0.27
51.26 0.39
52.9 0.74
47.74 0.37
32.58 0.00
39.35 0.36
24.51 0.74
22.58 0.00
20.64 0.73
53.21 0.46
69.14 0.06a
62.51 0.08
60.58 0.12
57.48 0.13
54.40 0.06
52.51 0.23
52.34 0.19
56.48 0.12
a
72.17 0.00
43.30 0.45
40.94 0.30
29.39 0.32
26.24 1.06
23.09 0.31
56.27 0.71
Mitomycinb
The data is indicated as the mean SEM (n = 3).
a
Denoting more significant value (P < 0.05).
Concentration of mitomycin used was 5 lg/ml.
b
significant activity against COLO-205 and HeLa even at lower
concentration (5 g/mL) when compared to parent compound 5.
By contrast, compound 5 was found to be more potent against
Zr-75-1 as compared to 6 at both 5 and 100 g/mL. At lower con-
centration (5 g/mL), compound 5 was found to be more active
of new compounds) associated with this article can be found, in
l
l
l
References and notes
against P388D1 and HL60 than compound 6.
In conclusion, we have synthesized two new homologues of
harzialactone by chiron approach starting from D-glucose in 10 steps
with overall yields of 20% and 23% for compounds 5 and 6 respec-
tively. Br2/BaCO3 mediated reaction apart from being chemoselec-
tive also resulted in bromination of phenyl ring exclusively at para
position. Thus compound 5 and 6, were studied for their anticancer
activity against five cancer cell lines which indicated their specificity
1. Amagata, T.; Usami, Y.; Minoura, K.; Ito, T.; Numata, A. J. Antibiot. 1998, 51,
33.
2. Souza, A. D. L.; Rodrigues-Filho, E.; Souza, A. Q. L.; Henrique, S. F.; Pereira, J. O. J.
Braz. Chem. Soc. 2008, 19, 1321.
3. Mereyala, H. B.; Gadikota, R. R. Tetrahedron: Asymmetry 1999, 10, 2305.
4. Mereyala, H. B.; Joe, M.; Gadikota, R. R. Tetrahedron: Asymmetry 2000, 11,
4071.
5. Jian, Y.-J.; Wu, Y.; Li, L.; Lu, J. Tetrahedron: Asymmetry 2005, 16, 2649.
6. Kotkar, S. P.; Suryavanshi, G. S.; Sudalai, A. Tetrahedron: Asymmetry 2007, 18,
1795.
7. Kumar, A. N.; Bhatt, S. S.; Chattopadhyay, S. Tetrahedron: Asymmetry 2009, 20,
205.
8. Chen, B.; Yin, H. F.; Wang, Z. S.; Xu, J. H. Tetrahedron: Asymmetry 2010, 21,
237.
9. Sabitha, G.; Srinivas, R.; Das, S. K.; Yadav, J. S. Beilstein J. Org. Chem. 2010, 6, 8.
10. Pawar, V. U.; Chavan, S. T.; Sabharwal, S. G.; Shinde, V. S. Bioorg. Med. Chem.
2010, 18, 7799.
towardstheCOLO-205andHeLaataconcentrationof100 lg/mLun-
like the harzialactone A 1 which is reported as a cytotoxic against
P388 cell line.1 Further work is in progress for the synthesis of other
analogues and to evaluate their anticancer activity that might repre-
sent possible leads in drug discovery processes.
11. Murakami, M.; Hayashi, M.; Ito, Y. J. Org. Chem. 1994, 59, 7910.
12. Yadav, J. S.; Prathap, I.; Tadi, B. P. Tetrahedron Lett. 2006, 47, 3773.
13. In spite of the close Rf values of these diastereomers, we were able to separate
small quantity of Z isomer by column chromatography which was obtained as
white crystalline solid and used for characterisation.
14. Balogh, V.; Fetizon, M.; Golfier, M. J. Org. Chem. 1971, 36, 1339.
15. Estevez, A.; Soengas, R. G.; Tato, R.; Thomas, P.; Estevez, J. C.; Estevez, R. J.;
Sussman, F. Tetrahedron: Asymmetry 2010, 21, 116.
Acknowledgement
We gratefully acknowledge University of Pune, Pune (BCUD/
OSD/184-2009) for financial support. We are thankful to Professor
M. S. Wadia for insightful discussions. S.G. is thankful to University
of Pune for research stipend. VUP is thankful to UGC (New Delhi,
INDIA) for fellowship in the form of SRF.
16. Zhang, F. M.; Yao, X. J.; Tian, X.; Tu, Y. Q. Molecules 2006, 11, 849.
17. Viswanathan, C. L.; Jain, A.; Deb, S.; Lokhande, T.; Juvekar, A. Indian J. Pharm. Sci.
2008, 70, 245.
18. Liu, Y.; Xing, H.; Han, X.; Shi, X.; Liang, F.; Cheng, G.; Lu, Y.; Ma, D. J. Huazhong
Univ. Sci. Technol. (Med. Sci.) 2008, 28, 197.
Supplementary data
19. Mosmann, T. J. Immunol. Meth. 1983, 65, 55.
Supplementary data (general experimental methods, inhibition
assay methods, experimental details and 1H and 13C NMR spectra