4318
D. Bhattacharya et al. / Inorganica Chimica Acta 363 (2010) 4313–4318
it is easier for the [{(p-NO2-P)C}CuIII] to be reduced compared to
that of [{T(p-OCH3-P)C}CuIII] analogs.
[5] M.R. Haneline, A.F. Heyduk, J. Am. Chem. Soc. 128 (2006) 8410.
[6] I. Luobeznova, L. Simkhovich, I. Goldberg, Z. Gross, Eur. J. Inorg. Chem. (2004)
1724.
[7] E. Steene, A. Dey, A. Ghosh, J. Am. Chem. Soc. 125 (2003) 16300.
[8] Z. Gross, J. Biol. Inorg. Chem. 6 (2001) 733.
[9] L. Simkhovich, A. Mahammed, I. Goldberg, Z. Gross, Chem. Eur. J. 7 (2001) 1041.
[10] S. Cai, F.A. Walker, S. Licoccia, Inorg. Chem. 39 (2000) 3466.
[11] O. Zakharieva, V. Schünemann, M. Gerdan, S. Licoccia, S. Cai, F.A. Walker, A.X.
Trautwein, J. Am. Chem. Soc. 124 (2002) 6636.
4.6. DFT calculations
Geometry optimized ground state MO’s were performed on the
unsubstituted copper–corrole by DFT method. The HOMO and
HOMO-1 are ligand based and LUMO is metal based with dx2
[12] S. Nardis, R. Paolesse, S. Licoccia, F.R. Fronczek, M.G.H. Vicente, T.K. Shokhireva,
S. Cai, F.A. Walker, Inorg. Chem. 44 (2005) 7030.
.
Ày2
The energy difference between LUMO and HOMO is only 27 kcal/
mol (Fig. 6) and such a small energy gap may be easily manipulated
by the solvation energy provided by the solvent. Thus, although +3
oxidation state of Cu is stable in nonpolar solvent, intramolecular
electron transfer facilitated by polar medium (by favorable mixing
of the d-orbitals of metal ion with the orbital of the corrole ring)
made Cu(II)–corrole2ꢀÀ state to be stable in the polar solvent.
[44–48].
[13] C.P. Gros, J.-M. Barbe, E. Espinosa, R. Guilard, Angew. Chem., Int. Ed. 45 (2006)
5642.
[14] A.W. Johnson, I.T. Kay, J. Chem. Soc. (1965) 1620.
[15] M. Stefanelli, M. Mastroianni, S. Nardis, S. Licoccia, F.R. Fronczek, K.M. Smith,
W. Zhu, Z. Ou, K.M. Kadish, R. Paolesse, Inorg. Chem. 46 (2007) 10791.
[16] S. Will, J. Lex, E. Vogel, H. Schmickler, J.-P. Gisselbrecht, C. Haubtmann, M.
Bernard, M. Gross, Angew. Chem., Int. Ed. 36 (1997) 357.
[17] I.H. Wasbotten, T. Wondimagegn, A. Ghosh, J. Am. Chem. Soc. 124 (2002) 8104.
[18] A. Ghosh, T. Wondimagegn, A.B.J. Parusel, J. Am. Chem. Soc. 122 (2000) 5100.
[19] C.V. Asokan, S. Smeets, W. Dehaen, Tetrahedron Lett. 42 (2001) 4483.
[20] W. Maes, T.H. Ngo, J. Vanderhaeghen, W. Dehaen, Org. Lett. 9 (2007) 3165.
[21] C. Bruckner, R.P. Brinas, J.A. Krause Bauer, Inorg. Chem. 42 (2003) 4495.
[22] D.T. Gryko, M. Tasior, T. Peterle, M. Bröring, J. Porphyrins Phthalocyanines 10
(2006) 1360.
5. Conclusions
[23] Y. Gao, J. Liu, M. Wang, Y. Na, B. Åkermark, L. Sun, Tetrahedron 63 (2007) 1987.
[24] Y. Gao, J. Liu, W. Jiang, M. Xia, W. Zhang, M. Li, B. Åkermark, L. Sun, J.
Porphyrins Phthalocyanines 11 (2007) 463.
[25] N. Maiti, J. Lee, S.J. Kwon, J. Kwak, Y. Do, D.G. Churchill, Polyhedron 25 (2006)
1519.
[26] A.B. Alemayehu, E. Gonzalez, L.K. Hansen, A. Ghosh, Inorg. Chem. 48 (2009)
7794. and references cited therein.
[27] M. Bröring, F. Brégier, E.C. Tejero, C. Hell, M.C. Holthausen, Angew. Chem., Int.
Ed. 46 (2007) 445.
[28] A.J. Vogel, Practical Organic Chemistry, fifth ed., Longmans, Prentice Hall,
London, UK, 1964.
[29] R. Paolesse, S. Nardis, F. Sagone, R.G. Khoury, J. Org. Chem. 66 (2001) 550.
[30] Bruker-Nonius, APEX-II and SAINT-Plus, Bruker-AXS Inc., Madison, Wisconsin,
USA, 2004.
[31] G.M. Sceldrick, SHELXS97, Program for Solution of Crystal Structure, University
of Gottingen, Gottingen, Germany, 1997.
[32] G.M. Sceldrick, SHELXL97, Program for Crystal Structure Analysis (Release 97-2),
University of Gottingen, Gottingen, Germany, 1997.
The chemistry associated with Cu metal insertion inside the
coordination core of corrole has been successfully investigated to
show that the air present in the reaction mixture oxidized the
Cu(II) ion to Cu(III) with the generation of O2ÁÀ. The X-ray structure
of this new copper–corrole showed saddle conformation with
three crystallographically independent copper–corrole molecules
interacting through weak
p–p stacking with non-identical struc-
tural parameters. Solvent induced changes in the electronic states
were confirmed by UV–Vis, EPR, solution magnetic moment and
cyclic voltammetric measurements. This difference in electronic
behavior in different solvents is due to the small energy gap be-
tween LUMO and HOMO. The propensity of other first row transi-
tion-metal–corrole complexes with different solvent is under
investigation.
[33] A.L. Spek, J. Appl. Crystallogr. 36 (2003) 7.
[34] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
Acknowledgements
[35] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J.A.
Pople, GAUSSIAN 03, Revision B.04; Gaussian, Inc., Pittsburgh, PA, 2003.
[36] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
D.B. acknowledges IIT Kanpur for a Senior Teaching Fellowship,
P.S. for a Senior Research Fellowship from the CSIR, New Delhi and
S.S. thanks the DST, New Delhi for funding the project.
Appendix A. Supplementary material
CCDC 771021 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
[37] C. Lee, W. Yang, R.G. Par, Phys. Rev. B37 (1988) 785.
[38] G.A. Patersson, M.A. Al-Laham, J. Chem. Phys. 94 (1991) 6081.
[39] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 299.
[40] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 270.
[41] I. Fridovich, Adv. Inorg. Biochem. 1 (1979) 67.
References
[42] C. Beauchamp, I. Fridovich, Anal. Biochem. 44 (1971) 276.
[43] M. Lombard, C. Houée-Levin, D. Touati, M. Fontecave, V. Niviére, Biochemistry
40 (2001) 5032.
[44] J. Seth, V. Palaniappan, D.F. Bocian, Inorg. Chem. 34 (1995) 2201.
[45] W. Kaim, B. Schwederski, Pure Appl. Chem. 76 (2004) 351. and references cited
therein.
[46] D. Dolphin, T. Niem, R.H. Felton, I. Fujita, J. Am. Chem. Soc. 97 (1975) 5288.
[47] R.M. Buchanan, J. Claflin, C.G. Pierpont, Inorg. Chem. 22 (1983) 2552.
[48] H.-C. Chang, K. Mochizuki, S. Kitagawa, Inorg. Chem. 41 (2002) 4444.
[1] A. Mahammed, Z. Gross, J. Am. Chem. Soc. 127 (2005) 2883.
[2] M.R. Ringenberg, S.L. Kokatam, Z.M. Heiden, T.B. Rauchfuss, J. Am. Chem. Soc.
130 (2008) 788.
[3] M.W. Bouwkamp, A.C. Bowman, E. Lobkovsky, P.J. Chirik, J. Am. Chem. Soc. 128
(2006) 13340.
[4] C. Stanciu, M.E. Jones, P.E. Fanwick, M.M. Abu-Omar, J. Am. Chem. Soc. 129
(2007) 12400.