B. Borhan, C. Vasileiou et al.
formation for synthetic scheme), and gratifyingly, the
cccTTT analogue N was found to be a perfect match
(Table 9). Further verification of this was obtained via the
synthesis of the full-length cccTTT molecule (10), which
Acknowledgements
Generous support was provided by the NIH (No. R01-GM082961).
1
produced identical H and 13C NMR spectra as compared to
[1] R. S. Narayan, B. Borhan, J. Org. Chem. 2006, 71, 1416–1429.
[2] T. R. Hoye, Z. P. Zhuang, J. Org. Chem. 1988, 53, 5578–5580.
[3] T. R. Hoye, J. C. Suhadolnik, J. Am. Chem. Soc. 1987, 109, 4402–
4403.
[4] D. P. Curran, Q. S. Zhang, H. J. Lu, V. Gudipati, J. Am. Chem. Soc.
2006, 128, 9943–9956.
[5] D. P. Curran, Q. S. Zhang, C. Richard, H. J. Lu, V. Gudipati, C. S.
Wilcox, J. Am. Chem. Soc. 2006, 128, 9561–9573.
[6] M. Carmen Zafra-Polo, M. C. Gonzalez, E. Estornell, S. Sahpaz, D.
Cortes, Phytochemistry 1996, 42, 253–271.
reported mucoxin. It is noteworthy that upon spectroscopic
analysis of the additional two truncated structures ttcTTT
(M) and cccTTT (N), the four trends derived from the origi-
nal 12 diastereomers also fit these structures.
In the final analysis, our results indicate that the original
À
trans stereochemical relationship for both rings (C9 C12
À
and C13 C16) is the source of error in the structure deter-
mination (trans stereochemistry of the ring substituents was
assumed from lack of NOE). This clearly demonstrates the
fallibility of using negative NOE results to assign relative
stereochemistries, especially in five-membered rings (pseudo
axial and pseudo equatorial disposition of substituents) if
both cis and trans isomers are not available for comparative
analysis. These problems are not isolated in structure deter-
mination, but also pose a challenge to synthetic organic
chemists in assigning stereochemistry of synthetic products.
The data also point to the fact that empirical results can be
of great value in stereochemical assignments since they can
be used as a guide and/or secondary verification for structur-
al elucidations.
[7] M. C. Zafra-Polo, B. Figadere, T. Gallardo, J. Tormo, D. Cortes, Phy-
tochemistry 1998, 48, 1087–1117.
[8] L. Zeng, Q. Ye, N. H. Oberlies, G. Shi, Z.-M. Gu, K. He, J. L.
McLaughlin, Nat. Prod. Rep. 1996, 13, 275–306.
[9] A. Cavꢃ, B. Figadꢄre, A. Laurens, D. Cortes, Prog. Chem. Org. Nat.
Prod. 1997, 70, 81–288.
[10] F. Q. Alali, X. X. Liu, J. L. McLaughlin, J. Nat. Prod. 1999, 62, 504–
540.
[11] J. R. Tormo, T. Gallardo, M. C. Gonzꢅlez, A. Bermejo, N. Cabedo, I.
Andreu, E. Estornell, Curr. Top. Phytochem. 1999, 2, 69–90.
[12] A. Bermejo, B. Figadere, M.-C. Zafra-Polo, I. Barrachina, E. Estor-
nell, D. Cortes, Nat. Prod. Rep. 2005, 22, 269–303.
[13] J. K. Rupprecht, Y.-H. Hui, J. L. McLaughlin, J. Nat. Prod. 1990, 53,
237–278.
[14] N. Maezaki, N. Kojima, T. Tanaka, Synlett 2006, 993–1003.
[15] G. Shi, J. F. Kozlowski, J. T. Schwedler, K. V. Wood, J. M. MacDou-
gal, J. L. McLaughlin, J. Org. Chem. 1996, 61, 7988–7989.
[16] S. Higashibayashi, W. Czechtizky, Y. Kobayashi, Y. Kishi, J. Am.
Chem. Soc. 2003, 125, 14379–14393.
Conclusion
[17] Y. Kobayashi, C. H. Tan, Y. Kishi, J. Am. Chem. Soc. 2001, 123,
2076–2078.
In summary, we have demonstrated a practical approach to-
wards solving stereochemical misassignments for molecules
that contain multiple chiral centers. In this “minimalist” ap-
proach, the initial goal is to generate spectroscopic data that
can correlate structural relationships with observable trends.
The choice of test structures is critical so that erroneous
trends are avoided as a result of having a compendium of
different stereochemical relationships besides the pair that
is being probed. In this manner, we were able to use 12 of
64 possible diastereomers to derive four trends, which re-
duced the field of possibilities to four isomers. The spectro-
scopic data for one of the four isomers matched the report-
ed data for mucoxin.
[18] Y. Kobayashi, C. H. Tan, Y. Kishi, Angew. Chem. 2000, 112, 4449–
4451; Angew. Chem. Int. Ed. 2000, 39, 4279–4281.
[19] Y. Kobayashi, J. Lee, K. Tezuka, Y. Kishi, Org. Lett. 1999, 1, 2177–
2180.
[20] J. Lee, Y. Kobayashi, K. Tezuka, Y. Kishi, Org. Lett. 1999, 1, 2181–
2184.
[21] R. S. Narayan, M. Sivakumar, E. Bouhlel, B. Borhan, Org. Lett.
2001, 3, 2489–2492.
[22] T. Zheng, R. S. Narayan, J. M. Schomaker, B. Borhan, J. Am. Chem.
Soc. 2005, 127, 6946–6947.
[23] L. Born, F. J. Lieb, P. Lorentzen, H. Moeschler, M. Nonfon, R. Soll-
ner, D. Wendisch, Planta Medica 1990, 56, 312–316.
Received: June 8, 2010
Published online: November 18, 2010
13756
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2010, 16, 13749 – 13756