Tetrahedron Letters
6
the aryl carbanion moiety of boronic acid favourably attacks the
Supporting information
iminium ion forming the stable intermediate (IM-2) which upon
hydrolysis furnished the desired product by the loss of H3BO3
molecule. Here chitosan plays a key role in the formation of iminium
ion intermediate (IM-1) (Scheme 2).
Supplementary data of all 1H and 13C NMR spectra associated with
article can be found in the online version at
References
1. (a) Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett. 1993,
34, 583-586; (b) Petasis, N. A.; Zavialov, I. A. J. Am.
Chem. Soc. 1997, 119, 445-446; (c) Grigg, R.; Sridharan,
V.; Thayaparan, A. Tetrahedron Lett. 2003, 44, 9017-
9019; (d) Petasis, N. A.; Zavialov, I. A. J. Am. Chem. Soc.
1998, 120, 11798-11799; (e) Prakash, G. K. S.; Mandal,
M.; Schweizer, S.; Petasis, N. A.; Olah, G. A. J. Org.
Chem. 2002, 67, 3718-3723; (f) Petasis, N. A.; Goodman,
A.; Zavialov, I. A. Tetrahedron 1997, 53, 16463-16470;
(g) Petasis, N. A.; Boral, S. Tetrahedron Lett. 2001, 42,
539-542; (h) Jiang. B.; Yang, C. G.; Gu, X. H.
Tetrahedron Lett. 2001, 42, 2545-2547; (i) Berree, F.;
Debache, A.; Marsac, Y.; Carboni, B. Tetrahedron Lett.
2001, 42, 3591-3594; (j) Portlock, D. E.; Naskar, D.; West,
L.; Li, M. Tetrahedron Lett. 2002, 43, 6845-6847; (k)
Naskar, D.; Roy, A.; Seibel, W. L. Tetrahedron Lett. 2003,
44, 8861-8863; (l) Naskar, D.; Roy, A.; Seibel, W. L.;
Portlock, D. E. Tetrahedron Lett. 2003, 44, 5819-5821;
(m) Wang, J.; Li, P.; Shen, Q.; Song, G. Tetrahedron Lett.
2014, 55, 3888-3891.
2. Petasis, N. A. Aust. J. Chem. 2007, 60, 795-798.
3. Southwood, T. J.; Curry, M. C.; Hutton, C. A. Tetrahedron
2006, 62, 236-242.
4. (a) Prakash, G. K. S.; Mandal, M.; Schweizer, S.; Petasis,
N. A.; Olah, G. A. Org. Lett. 2000, 2, 3173-3176; (b)
Schlienger, N.; Bryce, M. R.; Hansen, T. K. Tetrahedron
2000, 56, 10023-10030; (c) Kaiser, P. F.; Churches, Q. I.;
Hutton, C. A. Aust. J. Chem. 2007, 60, 799-810; (d) Wang,
Q.; Finn, M. G. Org. Lett. 2000, 2, 4063-4065.
Scheme 2: Plausible mechanism for chitosan catalyzed PBM
reaction.
3. Conclusions
In summary, we have developed the application of chitosan as a
green and reusable heterogeneous catalyst for the preparation of
alkylaminophenols via PBM reaction and the results were obtained
as good to excellent yields (86-95 %) in a shorter reaction time. The
complete conversion of the starting material to desired product, non
requirement of column chromatography purification, recoverability
and reusability of the catalyst up to ten cycles are the salient features
of this method. To the best of our knowledge, so far “chitosan
catalyzed three component PBM reaction” has not yet been reported
in the literature. Furthermore, studies are under progress on the
synthesis of chiral alkylaminophenols by our newly synthesized
chiral Brønsted acids such as camphor derived thioureas for the same
racemates.
5. (a) Frauenlob, R.; Garci, C.; Buttler, S.; Bergin, E. Appl.
Organometal. Chem. 2014, 28, 432-435; (b) Stas, S.;
Tehrani, K. A. Tetrahedron 2007, 63, 8921-8931; (c) Li,
Y.; Xu, M. H. Org. Lett. 2012, 14, 2062-2065; (d) Beisel,
T.; Manolikakes, G. Org. Lett. 2013, 15, 6046-6049; (e)
Shi, X.; Hebrult, D.; Humora, M.; Kiesman, W. F.; Peng,
H.; Talreja, T.; Wang, Z.; Xin, Z. J. Org. Chem. 2012, 77,
1154-1160.
General procedure for the synthesis of 2-((4-chlorophenyl)
(morpholino) methyl) phenol (4a):
To a stirred mixture of salicylaldehyde (122 mg, 1mmol) and
morpholine (96 mg, 1.1 mmol) in 1, 4-dioxane (5 mL) were added 4-
chloro phenylboronic acid (187 mg, 1.2 mmol) and chitosan (25 mg)
at room temperature. The resulting reaction mixture was allowed to
stir at 80˚C for 40 min. After complete conversion as indicated by
TLC, the reaction mixture was cooled to room temperature and the
catalyst was recovered by simple filtration after being washed with
ethyl acetate. The filtrate was diluted with water (15 mL) and
extracted with ethyl acetate (3×10 mL). The combined organic layers
were washed with 0.1 N HCl to remove excess of morpholine, 0.1 N
NaOH solution to remove the excess of boronic acid followed by
brine solution and dried over anhydrous sodium sulphate and
evaporated under reduced pressure to afford pure 2-((4-
chlorophenyl) (morpholino) methyl) phenol as a color less solid (4a)
in 95 % (288 mg) yield. This procedure is followed to the other
reactions, which are enlisted in Table 3.
6. (a) Nanda, K. K.; Trotter, B. W. Tetrahedron Lett. 2005,
46, 2025-2028; (b) Follmann, M.; Gaul, F.; Schafer, T.;
Kopec, S.; Hamley, P. Synlett. 2005, 1009-1011; (c)
Klopfenstein, S. R.; Chen, J. J.; Golebiowski, A.; Li, M.;
Peng, S. X.; Shao, X. Tetrahedron Lett. 2000, 41, 4835-
4839; (d) Golbiowski, A.; Klopfenstein, S. R.; Chen, J. J.;
Shao, X. Tetrahedron Lett. 2000, 41, 4841-4844.
7. (a) Yadav, J. S.; Subba Reddy, B. V.; Naga Lakshmi, P. J.
Mol. Catal. A: Chem. 2007, 274, 101-104; (b) Candeias, N.
R.; Veiros, L. F.; Afonso, C. A. M.; Gois, P. M. P. Eur. J.
Org. Chem. 2009, 1859-1863.
8. (a) Hajji, S.; Younes, I.; Ghorbel-Bellaaj, O.; Hajji, R.;
Rinaudo, M.; Nasri, M.; Jellouli, K. Int. J. Biol. Macromol.
2014, 65, 298-306; (b) Rajender Reddy, K.; Rajgopal, K.;
Uma Maheswari, C.; Lakshmi Kantam, M. New. J. Chem.
2006, 30, 1549-1552; (c) Dekamin, M. G.; Azimoshan, M.;
Ramezani, L. Green Chem. 2013, 15, 811-820; (d) Subba
Reddy, B. V.; Venkateswarlu, A.; Niranjan Reddy, G.;
Rami Reddy, Y. V. Tetrahedron Lett. 2013, 54, 5767-
5770; (e) Anil Kumar, B. S. P.; Harsha Vardhan Reddy,
K.; Karnakar, K.; Satish, G.; Nageswar, Y. V. D.
Tetrahedron Lett. 2015, 56, 1968-1972; (f) Bodhak, C.;
Kundu, A.; Pramanik, A. Tetrahedron Lett. 2015, 56, 419-
424; (g) Mahe, O.; Briere, J. F.; Dez, I. Eur. J. Org. Chem.
2015, 2559-2578; (h) Siddiqui Zeba, N. Tetrahedron Lett.
Acknowledgements
The authors are thankful to the Board of Research in Nuclear
Sciences (BRNS), Mumbai, India for providing the financial support
(NO. 2012/37C/33/BRNS). We also acknowledge the support of
University Grants Commission (UGC), New Delhi for providing
Junior Research Fellowship (JRF) to S.S.Reddy.