68
S. K. Sharma et al. / Tetrahedron Letters 52 (2011) 65–68
procedure published in the literature21) and ICl. In all cases, the
substrates efficiently underwent intramolecular electrophilic cycli-
zation to furnish 24 compounds in good to excellent yields (Table
3). In general reactions were not sensitive either to the electronic
properties of the substituent on the phenyl ring of the indole or
to the nature of the carbamate group. Use of substituted phenyl
ring R3 in 3 with both electron-donating and withdrawing groups
8. Bansal, R. K.; Sharma, D.; Jain, J. K. Indian J. Chem. 1998, 27, 366–367.
´
9. (a) Vera-Luque, P.; Alajarın, R.; Alvarez-Builla, J.; Vaquero, J. J. Org. Lett. 2006, 8,
415–418; (b) Hostyn, S.; Baelen, G. V.; Lemire, G. L. F.; Maesa, B. U. W. Adv.
Synth. Catal. 2008, 350, 2653–2660; (c) Molina, P.; Fresneda, P. M. Synthesis
1989, 878–880; (d) Beccalli, E. M.; Clerici, F.; Marchesini, A. Tetrahedron 2001,
57, 4787–4792; (e) Erba, E.; Gelmi, M. L.; Pocar, D. Tetrahedron 2000, 56, 9991–
9997; (f) Ono, A.; Narasaka, K. Chem. Lett. 2001, 146–147; (g) Achab, S.; Guyot,
M.; Potier, P. Tetrahedron Lett. 1995, 36, 2615 2618; (h) Forbes, I. T.; Johnson, C.
N.; Thompson, M. J. Chem. Soc., Perkin Trans. 1 1992, 275–281.
10. (a) Biggs-Houck, J. E.; Younai, A.; Shaw, J. T. Curr. Opin. Chem. Biol. 2010, 14,
371–382; (b) Tour, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439–4486; (c) Lu, J.;
Gong, X.; Yang, H.; Fu, H. Chem. Commun. 2010, 4172–4174; (d) Zhu, Y.; Zhai,
C.; Yue, Y.; Yang, L.; Hu, W. Chem. Commun. 2009, 1362–1364.
had no effects on the yield of
a-carbolines. Similarly, employing
phenyl ring as R4 had no effect on the yield 78–90% but employing
aliphatic as R4 moiety reduced the yield of
a-carbolines to 46–78%.
As described elsewhere19, propargyl alcohol (R3 = R4 = H; unstab-
lized22) failed to undergo nucleophilic substitution by C-3 of the in-
doles to form 3.
11. For review see: (a) Weber, L. Drug Discovery Today 2002, 7, 143–147; (b)
Ulaczyk-Lesanko, A.; Hall, D. G. Curr. Opin. Chem. Biol. 2005, 9, 266–276.
12. (a) Agarwal, P. K.; Sawant, D.; Sharma, S.; Kundu, B. Eur. J. Org. Chem. 2009, 2,
292–303; (b) Sharma, S.; Kundu, B. Tetrahedron Lett. 2008, 49, 7062–7065; (c)
Sharma, S. K.; Sharma, S.; Agarwal, P. K.; Kundu, B. Eur. J. Org. Chem. 2009, 9,
1309–1312; (d) Saha, B.; Sharma, S.; Sawant, D.; Kundu, B. Tetrahedron Lett.
2007, 48, 1379–1383; (e) Saha, B.; Kumar, R.; Maulik, P. R.; Kundu, B.
Tetrahedron Lett. 2006, 47, 2765–2769; (f) Sawant, D.; Kumar, R.; Maulik, P. R.;
Kundu, B. Org. Lett. 2006, 8, 1525–1528; (g) Sharma, S. K.; Mandadapu, A. K.;
Saifuddin, M.; Gupta, S.; Agarwal, P. K.; Mandwal, A. K.; Gauniyal, H. M.; Kundu,
B. Tetrahedron Lett. 2010, 51, 6022–6024.
In summary, we have developed two simple and highly efficient
multicomponent tandem reactions for the selective synthesis of Na
Nb dicarbamate-4,9-dihydro-3-iodo- -carbolines and Na-carba-
a
mate-3-iodo-a-carbolines via iodo-cyclization/iodo-cyclo-elimina-
tion in good to excellent yields. Haloheterocycles have been
documented to play a central role as intermediates in organic syn-
thesis, due to their ability to undergo numerous palladium-cata-
lyzed reactions for the substitution of halide atom. Studies to
extend the scope of the procedure to other iodoheterocycles via
iodocyclization of substrates containing carbamate-protected ami-
no groups are in progress in our laboratory and results will be pub-
lished elsewhere.
13. Ye, S.; Gao, K.; Wu, J. Adv. Synth. Catal. 2010, 352, 1746–1751.
14. (a) Hino, T.; Nakagawa, M.; Hashizume, T.; Yamaji, N.; Miwa, Y. Tetrahedron
Lett. 1970, 11, 2205–2208; (b) Nakagawa, M.; Yamaguchi, H.; Hino, T.
Tetrahedron Lett. 1970, 11, 4035–4038. and references cited therein; (c) Roy,
S.; Gribble, G. W. Tetrahedron Lett. 2007, 48, 1003–1005; (d) Witulski, B.;
Alayrac, C.; Tevzadze-Saeftel, L. Angew. Chem., Int. Ed. 2003, 42, 4257–4260.
15. Glennon, R. A.; Strandtmann, M. V. J. Heterocycl. Chem. 1975, 12, 135–138.
16. See Supplementary data.
17. Stykala, J.; Slouka, J.; Svecova, V. ARKIVOC 2006, 68–75.
18. General procedure for the three component tandem synthesis of 4,9-dihydro-3-
iodo
a-carbolines 4: To a solution of 2-ethoxycarbonylamino-indole-1-
Acknowledgment
carboxylic acid ethyl ester 1a (0.200 g, 0.73 mmol) and 1-(4-chloro-phenyl)-
3-phenyl-prop-2-yn-1-ol 2a (0.175 g, 0.73 mmol) in acetonitrile (10 ml), iodine
(0.920 g, 3.62 mmol) was added and stirred for 0.5 h at 0 °C to rt. Next, K2CO3
(0.250 g, 1.81 mmol) was added to the reaction mixture at 0 °C and the
reaction mixture was allowed to stir at room temperature for 1 h. After
completion of the reaction as analyzed by TLC, it was diluted with saturated
sodium thiosulphate solution and extracted with EtOAc (20 mL Â 3). The
organic layer was washed with brine (10 mL), dried over anhydrous sodium
sulfate and evaporated to dryness under reduced pressure. The crude product
so obtained was purified on a silica gel column using hexane: ethyl acetate
S.K.S., S.G., M.S., A.K.M., and P.K.A. are thankful to CSIR, New
Delhi, India for fellowships.
Supplementary data
Supplementary data associated with this article can be found, in
(1:9, v/v) as eluent to afford dihydro-
General procedure for the one-pot three-component tandem reaction leading to the
synthesis of 3-iodo- -carbolines 5: To a solution of 2-ethoxycarbonylamino-
a-carbolines 4.
a
References and notes
indole-1-carboxylic acid ethyl ester 1a (0.200 g, 0.73 mmol) and 1-(4-chloro-
phenyl)-3-phenyl-prop-2-yn-1-ol 2a (0.175 g, 0.73 mmol) in acetonitrile
(10 ml), iodine (0.920 g, 3.62 mmol) was added and stirred for 0.5 h at 0 °C
to rt. Next, ICl (1 M solution in DCM, 3.4 ml) was added to the reaction mixture
at 0 °C and the reaction mixture was allowed to stir at room temperature for
1 h. After completion of the reaction as analyzed by TLC, it was diluted with
saturated sodium thiosulphate solution and extracted with EtOAc (20 mL Â 3).
The organic layer was washed with brine (10 mL), dried over anhydrous
sodium sulfate and evaporated to dryness under reduced pressure. The crude
product so obtained was purified on a silica gel column using hexane: ethyl
1. Helbecque, N.; Moquin, C.; Bernier, J. L.; Morel, E.; Guyot, M.; Henichart, J. P.
Cancer Biochem. Biophys. 1987, 9, 271–279.
2. Cimanga, K.; DeBruyne, T.; Pieters, L.; Vlietinck, A. J.; Turger, C. A. J. Nat. Prod.
1997, 60, 688–691.
3. Yeung, B. K. S.; Nakao, Y.; Kinnel, R. B.; Carney, J. R.; Yoshida, W. Y.; Scheuer, P. J.
J. Org. Chem. 1996, 61, 7168–7173.
4. Kim, J.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Seto, H. Tetrahedron Lett. 1997,
38, 3431–3434.
5. Raza, H.; King, R. S.; Squires, R. B.; Guengerich, F. P.; Miller, D. W.; Freeman, J. P.;
Lang, N. P.; Kadlubar, F. F. Drug Metab. Dispos. 1996, 24, 395–400.
6. Jaromin, A.; Kozubek, A.; Suchoszek-Lukaniuk, K.; Malicka-Blaszkiewicz, M.;
Peczynska-Czoch, W.; Kaczmarek, L. Drug Deliv. 2008, 15, 49–56.
7. (a) Pogodaeva, N. N.; Shagun, V. A.; Semenov, A. A. Khim.-Fram. Zh. 1985, 19,
1054–1056; (b) Peczyska-Czoch, W.; Pognan, F.; Kaczmarek, L.; Boratynski, J. J.
Med. Chem. 1994, 37, 3503–3510.
acetate (1:19, v/v) as eluent to afford a-carbolines 5.
19. Srihari, P.; Bhunia, D. C.; Sreedhar, P.; Mandal, S. S.; Reddy, J. S. S.; Yadav, J. S.
Tetrahedron Lett. 2007, 48, 8120–8124.
20. Akiba Kin-ya, E. Y.; Wada, M. Tetrahedron Lett. 1982, 23, 429–432.
21. Forgione, P.; Wilson, P. D.; Fallis, A. G. Tetrahedron Lett. 2000, 41, 17–20.
22. Mahrwald, R.; Quint, S.; Scholtis, S. Tetrahedron Lett. 2000, 41, 17–20.