350
Y. Kuninobu et al. / Journal of Organometallic Chemistry 696 (2011) 348e351
Table 2
Acknowledgment
Reactions of aldimine 1a with alkenes 2.a
This work was partially supported by the Ministry of Education,
Culture, Sports, Science, and Technology of Japan.
Ph
H
HN
Ph
[HRe(CO)4]n (Re: 5.0 mol%)
toluene, 180 °C, 24 h
+
N
R
R
Appendix. Supplementary data
1a
2
4
Supplementary data associated with this article can be found, in
Entry
R
Yield (%)b
1c
2
4-MeC6H4 2b
4-FC6H4 2c
4h 90 (91)
4i 66 (76)
References
3
4j 63 (66)
[1] There have been several reviews on transition metal-catalyzed trans-
formations via CeH bond activation. See: (a) F. Kakiuchi, S. Murai, Top.
Organomet. Chem. 3 (1999) 47;
(b) Y. Guari, S. Sabo-Etienne, B. Chaudret, Eur. J. Inorg. Chem. (1999) 1047;
(c) G. Dyker, Angew. Chem. Int. Ed. 38 (1999) 1698;
(d) F. Kakiuchi, T. Kochi, Synthesis (2008) 3013.
[2] We have already reported several rhenium-catalyzed transformations that
occur via CeH bond activation. See: (a) Y. Kuninobu, Y. Tokunaga, A. Kawata,
K. Takai, J. Am. Chem. Soc. 128 (2006) 202;
2d
4d
nC8H17 2e
Ph
Ph
Ph
HN
HN
HN
n
C8H17
+
+
n
C8H17
(b) Y. Kuninobu, Y. Nishina, M. Shouho, K. Takai, Angew. Chem. Int. Ed. 45
(2006) 2766;
(c) Y. Kuninobu, Y. Nishina, C. Nakagawa, K. Takai, J. Am. Chem. Soc. 128
(2006) 12376;
(d) Y. Kuninobu, Y. Tokunaga, K. Takai, Chem. Lett. 36 (2007) 872;
(e) Y. Kuninobu, Y. Nishina, T. Matsuki, K. Takai, J. Am. Chem. Soc. 130 (2008)
14062;
(f) Y. Kuninobu, Y. Nishina, K. Okaguchi, M. Shouho, K. Takai, Bull. Chem. Soc.
Jpn. 81 (2008) 1393.
n
4k''
C8H17
4k
4k'
4kþ4k0þ4k00 85 (86) [77:11:12]e
a
2 (2.0 equiv).
b
c
Isolated yield. Yield determined by 1H NMR is reported in parentheses.
2 (4.0 equiv).
After 24 h, [HRe(CO)4]n (Re: 5.0 mol%) and 2a (2.0 equiv) were added, and the
d
reaction mixture was stirred at 180 ꢀC for 24 h.
e
The ratios between 4k, 4k0 and 4k00 are reported in square brackets.
[3] (a) S. Ueno, N. Chatani, F. Kakiuchi, J. Org. Chem. 72 (2007) 3600;
(b) Y. Matsuura, M. Tamura, T. Kochi, M. Sato, N. Chatani, F. Kakiuchi, J. Am.
Chem. Soc. 129 (2007) 9858.
[4] For examples, see: (a) F. Kakiuchi, Y. Yamamoto, N. Chatani, S. Murai, Chem.
Lett. (1995) 681;
occurs in previously reported rhenium-catalyzed CeH trans-
(b) Y. Nakao, K.S. Kanyva, S. Oda, T. Hiyama, J. Am. Chem. Soc. 128 (2006)
8146;
formations [2].
(c) Y. Kuninobu, K. Kikuchi, Y. Tokunaga, Y. Nishina, K. Takai, Tetrahedron 64
(2008) 5974;
(d) Y. Kuninobu, Y. Fujii, T. Matsuki, Y. Nishina, K. Takai, Org. Lett. 11 (2009)
2711.
3. Summary
We have succeeded in developing the rhenium complex
[HRe(CO)4]n, which catalyzes the synthesis of 2-alkenylbenzyl-
amines from aromatic aldimines and alkenes. This reaction
proceeds via aromatic CeH bond activation, insertion of the alkene
[5] (a) Y. Fujiwara, I. Moritani, S. Danno, R. Asano, S. Teranishi, J. Am. Chem. Soc.
91 (1969) 7166;
(b) J. Tsuji, H. Nagashima, Tetrahedron 40 (1984) 2699;
(c) T. Yokota, M. Tani, S. Sakaguchi, Y. Ishii, J. Am. Chem. Soc. 125 (2003) 1476;
(d) M. Dams, D.E. De Vos, S. Celen, P.A. Jacobs, Angew. Chem. Int. Ed. 42 (2003)
3512;
(e) E.M. Beck, N.P. Grimster, R. Hatley, M.J. Gaunt, J. Am. Chem. Soc. 128 (2006)
2528.
into a CeH bond of the aromatic compound,
and hydrogenation of the imino group of the aromatic aldimine.
The -hydride elimination and hydrogenation steps are rare
b-hydride elimination
b
[6] There have been a few reports of
b-hydride elimination following the inser-
examples in transformations that proceed via aromatic CeH bond
activation. By changing the rhenium catalyst to [ReBr(CO)3(thf)]2,
a quinoline derivative was produced from an aromatic aldimine and
styrene via an aza-DielseAlder reaction.
tion of an alkene into an aromatic CeH bond. See: (a) P. Hong, H. Yamazaki,
Chem. Lett. (1979) 1335;
(b) F. Kakiuchi, T. Sato, M. Yamauchi, N. Chatani, S. Murai, Chem. Lett. (1999) 19;
(c) F. Kakiuchi, T. Tsujimoto, M. Sonoda, N. Chatani, S. Murai, Synlett (2001) 948.
[7] Investigation of several rhenium catalysts and temperatures: Re2(CO)10 at
180 ꢀC, 0%; ReBr(CO)5 at 150 ꢀC, 28% and at 180 ꢀC, 30%; [ReBr(CO)3(thf)]2 at
150 ꢀC, 31% and at 180 ꢀC, 28%; [HRe(CO)4]n at 150 ꢀC, 0% and at 180 ꢀC, 0%.
[8] Iron-promoted and rhodium-catalyzed synthesis of quinoline derivatives via
an aza-DielseAlder reaction between N-aryl aldimines and styrenes has been
reported. See: (a) R. Leardini, D. Nanni, A. Tundo, G. Zanardi, F. Ruggieri, J. Org.
Chem. 57 (1992) 1842;
Ph
HN
H
Ph
N
R2
(b) M. Beller, O.R. Thiel, H. Trauthwein, C.G. Hartung, Chem. Eur. J. 6 (2000)
2513.
[9] The reaction did not proceed using the following transition metal complexes:
R1
R1
4
Re
(1)
H
(5)
Re
Mn2(CO)10
Ir4(CO)12
,
MnBr(CO)5, RuH2(CO)(PPh3)3, Ru3(CO)12
,
RhCl(PPh3)3 and
.
Ph
H
[10] Investigation of catalytic amounts: 0.50 mol%, 7%; 1.0 mol%, 9%; 2.5 mol%, 22%.
[11] Investigation of several solvents: neat, 7%; octane, trace; toluene, 80%; 1,2-
dichloroethane, trace; n-hexanenitrile, 10%.
[12] Following the reviewer’s suggestion, we have examined the reactions
between aldimine 1a and styrene (2a) using 5.0 equiv of a hydrogen acceptor,
such as norbornene or 3,3-dimethyl-1-butene, under the reaction conditions
shown in Eq. (2). As a result, alkenylated product 4a was obtained in 4% and
64% yields, respectively.
N
Ph
N
Re
H
R1
R2
R1
H
H
Re
Ph
R2
H
(4)
Ph
N
N
[13] The reaction did not proceed using Re2(CO)10, ReBr(CO)5 or [ReBr(CO)3(thf)]2.
[14] (a) S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda,
N. Chatani, Nature 366 (1993) 529;
H
(2)
Re
H
(3)
R2
R1
R1
R2
5
(b) F. Kakiuchi, M. Sonoda, T. Tsujimoto, N. Chatani, S. Murai, Chem. Lett.
(1999) 1083;
Scheme 2. Proposed mechanism for the formation of 2-alkenylbenzylamines 4.
(c) Y.-G. Lim, J.-S. Han, S.-S. Yang, J.H. Chun, Tetrahedron Lett. 42 (2001) 4853;