Pyrrolidine-based Dicationic Acidic Ionic Liquids
pans. The ion conductivity was measured by using a
Mettler-FE30 digital conductivity-meter at 25 ℃.
Brønsted acidity: measurement of the H0 values with an
Agilent 8453 UV-vis spectrophotometer and a basic
indicator.
39.43, H 6.38, N 3.28; found C 39.35, H 6.52, N 3.21.
1,1'-(Hexane-1,6-diyl)bis[N-(4-sulfobutyl)pyrrol-
idine]-p-toluenesulfonate (1∶ 2) (III) 1H NMR (D2O,
400 MHz) δ: 7.52 (d, J=8.4 Hz, 4H), 7.20 (d, J=8.0
Hz, 4H), 3.35 (t, J=6.8 Hz, 8H), 3.18 (t, J=6.8 Hz,
4H), 2.86 (t, J=6.0 Hz, 4H), 2.80 (t, J=7.2 Hz, 4H),
2.22 (s, 6H), 2.03 (t, J=6.8 Hz, 8H), 1.77 (t, J=8.0 Hz,
4H), 1.63 (t, J=8.0 Hz, 4H); 13C NMR (D2O, 100 MHz)
δ: 142.37, 139.39, 129.38, 125.26, 64.23, 64.21, 63.38,
57.34, 49.91, 47.90, 47.86, 21.91, 21.15, 20.39, 16.71.
ESI-MS: m/z (+) 497.8, m/z (-) 171.2. Anal. calcd for
C36H60N2O12S4 (841.13): C 51.41, H 7.19, N 3.33;
found C 51.25, H 7.27, N 3.26.
1,1'-(Decane-1,10-diyl)bis[N-(4-sulfobutyl)pyrrol-
idine]-p-toluenesulfonate (1∶ 2) (IV) 1H NMR (D2O,
400 MHz) δ: 7.50 (d, J=8.4 Hz, 2H), 7.19 (d, J=8.0
Hz, 2H), 3.31 (t, J=6.8 Hz, 8H), 3.07 (t, J=8.0 Hz,
4H), 2.78 (t, J=8.0 Hz, 4H), 2.22 (s, 6H), 1.97 (t, J=
6.8 Hz, 8H), 1.72 (t, J=8.0 Hz, 4H), 1.69 (t, J=8.0 Hz,
4H), 1.58 (t, J=6.8 Hz, 4H), 1.16—1.22 (m, 12H); 13C
NMR (D2O, 100 MHz) δ: 141.69, 140.22, 129.21,
125.36, 59.99, 59.00, 57.83, 57.32, 49.94, 31.77, 29.24,
29.17, 28.74, 25.84, 22.43, 21.23, 20.87, 20.79, 19.19,
16.70. ESI-MS: m/z (+) 553.8, m/z (-) 171.2. Anal.
calcd for C40H68N2O12S4 (897.23): C 53.55, H 7.64, N
3.12; found C 53.47, H 7.69, N 3.08.
Preparation of SO3H-functionalized ionic liquids
Starting materials (α,ω-dipyrrolidino-alkanes and
N-alkylpyrrolidine) were synthesized according to a
similar approach as reported previously.23-25
Ionic liquids used in this article (Scheme 1 and Fig-
ure 1) were synthesized according to similar previous
literatures.11-13 1,6-Dipyrrolidino-hexane (or 1,10-dipyr-
rolidino-decane) and 1,4-butane sultone were mixed and
refluxed with a molar ratio of 1∶2 in anhydrous ace-
tonitrile for 48 h to give a white solid zwitterion salt.
After washing the salt repeatedly with acetonitrile and
ether to remove any unreacted starting material, the
solid was dried in vacuo. Then, a twofold stoichiometric
amount of CF3SO3H was added dropwise and the mix-
ture stirred in anhydrous toluene at 80 ℃ for 24 h, re-
sulting in the formation of dicationic acidic IL I or II.
The IL phase was washed with toluene and ether to re-
move the non-ion residue and dried in vacuo. ILs III
and IV could be synthesized when the zwitterion salts
and p-CH3C6H4SO3H•H2O were mixed with a molar
ratio of 1∶2 in anhydrous ethanol and refluxed for 8 h.
Yields of ILs I—IV: 91%—93%.
N-Methyl-[N-(4-sulfonbutyl)pyrrolidine]trifluoro-
methanesulfonate (V) 1H NMR (D2O, 400 MHz) δ:
3.33 (t, J=4.8 Hz, 4H), 3.20 (t, J=7.6 Hz, 2H), 2.86 (s,
3H), 2.80 (t, J=7.2 Hz, 2H), 2.03 (t, J=4.8 Hz, 4H),
1.78 (t, J=7.6 Hz, 2H), 1.63 (t, J=7.6 Hz, 2H); 13C
NMR (D2O, 100 MHz) δ: 119.71 (q, JC-F=315.2 Hz,
CF3), 64.41, 63.54, 57.51, 50.06, 48.06, 22.06, 21.30,
16.86. ESI-MS: m/z (+) 222.3, m/z (-) 149.0. Anal.
calcd for C10H20F3NO6S2 (371.39): C 32.34, H 5.43, N
3.77; found C 32.37, H 5.59, N 3.80.
N-Alkylpyrrolidine reacted with 1,4-butane sultone
in a molar ratio of 1∶1 to form the white solid zwit-
terion. And conversion to the monocationic acidic ILs
(V—VIII) was accomplished by combining equimolar
quantities of the zwitterion and acid (CF3SO3H or
p-CH3C6H4SO3H•H2O). Yields: 94%—96%.
All the above ILs are viscous liquids, and their spec-
tral data are shown as follows.
1,1'-(Hexane-1,6-diyl)bis[N-(4-sulfobutyl)pyrrol-
idine]trifluoromethanesulfonate (1∶ 2) (I) 1H NMR
(D2O, 400 MHz) δ: 3.36 (t, J=6.8 Hz, 8H), 3.16 (t, J=
8.0 Hz, 4H), 3.10 (t, J=8.0 Hz, 4H ), 2.81 (t, J=7.2 Hz,
4H), 2.24 (t, J=6.8 Hz, 8H), 1.75 (t, J=8.0 Hz, 4H),
1.71 (t, J=8.0 Hz, 4H), 1.65 (t, J=6.8 Hz, 4H), 1.26 (t,
J=6.8 Hz, 4H); 13C NMR (D2O, 100 MHz) δ: 119.71 (q,
JC-F=315.2 Hz, CF3), 64.24, 64.21, 63.73, 49.89, 47.91,
21.90, 21.13. ESI-MS: m/z (+) 497.8, m/z (-) 149.0.
Anal. calcd for C24H46F6N2O12S4 (796.88): C 36.17, H
5.82, N 3.52; found C 36.05, H 5.91, N 3.50.
1,1'-(Decane-1,10-diyl)bis[N-(4-sulfobutyl)pyrrol-
idine]trifluoromethanesulfonate (1∶ 2) (II) 1H NMR
(D2O, 400 MHz) δ: 3.33 (t, J=6.8 Hz, 8H), 3.14 (t, J=
8.0 Hz, 4H), 3.07 (t, J=8.0 Hz, 4H), 2.79 (t, J=7.2 Hz,
4H), 1.98 (t, J=6.8 Hz, 8H), 1.79 (t, J=8.0 Hz, 4H),
1.68 (t, J=8.0 Hz, 4H), 1.58 (t, J=6.8 Hz, 4H), 1.14—
1.18 (m, 12H); 13C NMR (D2O, 100 MHz) δ: 119.71 (q,
JC-F=315.2 Hz, CF3), 62.80, 59.63, 58.75, 57.34, 49.95,
28.18, 27.97, 25.42, 22.71, 22.48, 22.35, 22.19, 21.48,
21.38, 21.14, 16.69. ESI-MS: m/z (+) 553.8, m/z (-)
149.0. Anal. calcd for C28H54F6N2O12S4 (852.98): C
N-Hexyl-[N-(4-sulfonbutyl)pyrrolidine]trifluoro-
methanesulfonate (IL VI) 1H NMR (D2O, 400 MHz)
δ: 3.35 (t, J=4.8 Hz, 4H), 3.12 (t, J=7.6 Hz, 2H), 3.08
(t, J=7.6 Hz, 2H), 2.80 (t, J=7.2 Hz, 2H), 2.00 (t, J=
4.8 Hz, 4H), 1.76 (t, J=7.6 Hz, 2H), 1.62 (t, J=7.6 Hz,
2H), 1.55 (t, J=4.8 Hz, 4H), 1.12—1.21 (m, 6H), 0.55
(t, J=6.4 Hz, 3H); 13C NMR (D2O, 100 MHz) δ: 119.71
(q, JC-F=315.2 Hz, CF3), 62.79, 59.67, 58.78, 57.34,
49.93, 49.76, 30.35, 25.29, 22.99, 22.37, 21.66, 21.48,
21.39, 21.14, 16.70, 13.12. ESI-MS: m/z (+) 292.4, m/z
(-) 149.0. Anal. calcd for C15H30F3NO6S2 (441.53): C
40.80, H 6.85, N 3.17; found C 40.87, H 6.99, N 3.14.
N-Decyl-[N-(4-sulfonbutyl)pyrrolidine]trifluoro-
methanesulfonate (IL VII) 1H NMR (D2O, 400 MHz)
δ: 3.33 (t, J=4.8 Hz, 4H), 3.12 (t, J=7.6 Hz, 2H), 3.07
(t, J=7.6 Hz, 2H), 2.78 (t, J=7.2 Hz, 2H), 1.99 (t, J=
4.8 Hz, 4H), 1.71 (t, J=7.6 Hz, 2H), 1.63 (t, J=7.6 Hz,
2H), 1.55 (t, J=4.8 Hz, 4H), 1.10—1.12 (m, 12H), 1.00
(t, J=6.8), 0.69 (t, J=6.4, 3H); 13C NMR (D2O, 100
MHz) δ: 119.71 (q, JC-F=315.2 Hz, CF3), 62.99, 59.89,
59.34, 57.57, 50.26, 31.94, 29.54, 29.40, 29.04, 26.27,
23.06, 22.66, 21.84, 21.58, 16.94, 13.88. ESI-MS: m/z
Chin. J. Chem. 2010, 28, 2003— 2008
© 2010 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2007