Table 2 Preliminary substrate scope of the asymmetric cyclization
reaction catalyzed by indane amine-thiourea 5a
bifunctional indane amine-thiourea catalyst 5.
A
broad
substrate scope of spiro chromanone–thiochromans were
obtained. Further application of the catalytic system to other
new reactions is currently under investigation.
We gratefully acknowledge the National University of
Singapore for financial support of this work (Academic
Research Grants: R143000408133, R143000408733 and
R143000443112).
Yieldb
(%)
eed
Entry X
Y
Z
R
d.r.c (%)
1
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
O
O
O
O
O
O
O
O
O
O
O
O
O
Ph (8a)
96
98
96
97
97
97
95
96
96
98
97
97
98
8.0 : 1 97
8.1 : 1 95
7.6 : 1 97
19 : 1 95
7.7 : 1 97
8.2 : 1 95
20 : 1 97
8.0 : 1 96
8.0 : 1 96
11 : 1 99
10 : 1 98
8.0 : 1 97
17 : 1 98
Notes and references
2
4-ClC6H4 (8b)
3-ClC6H4 (8c)
2-BrC6H4 (8d)
4-NO2C6H4 (8e)
3,4-Cl2C6H3 (8f)
2-F,4-ClC6H3 (8g)
4-MeOC6H4 (8h)
4-AllyloxyC6H4 (8i)
2-AllyloxyC6H4 (8j)
3-PhOC6H4 (8k)
4-iPrC6H4 (8l)
6-Br-benzodioxole
(8m)
3e
4
1 For reviews, see: (a) K. C. Nicolaou and T. Montagnon,
Molecules that Changed the World: A Brief History of the Art
and Science of Synthesis and its Impact on Society, Wiley,
Weinheim, 2008; (b) K. C. Nicolaou and E. J. Sorensen,
Classics in Total Synthesis, Wiley, Weinheim, 1995;
(c) K. C. Nicolaou and S. A. Snyder, Classics in Total Synthesis
II, Wiley, Weinheim, 2003.
2 For reviews, see: (a) C. Grondal, M. Jeanty and D. Enders, Nat.
Chem., 2010, 2, 167; (b) K. C. Nicolaou and J. S. Chen, Chem. Soc.
Rev., 2009, 38, 2993.
3 Books and selected examples of applications of chromanone:
(a) F. M. Dean, Naturally Occurring Oxygen Ring Compounds,
Butterworths, London, 1963; (b) G. P. Ellis, Chromans and
Tocopherols, Wiley, New York, 1977; (c) S. T. Saengchantara
and T. W. Wallace, Nat. Prod. Rep., 1986, 3, 465.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
6-
O
O
O
O
O
5-Me-furan (8n)
2-Thiophene (8o)
1-Naphthyl (8p)
Isopropyl (8q)
Cyclohexyl (8r)
96
98
95
96
98
96
97
98
8.4 : 1 96
8.3 : 1 97
4.5 : 1 95
57 : 1 95
24 : 1 96
10 : 1 95
1.2 : 1 96
16 : 1 97
4 B. Chenera, M. L. West, J. A. Finkelstein and G. B. Dreyer, J. Org.
Chem., 1993, 58, 5605.
5 B. S. Crombie, A. D. Redhouse, C. Smith and T. W. Wallace,
J. Chem. Soc., Chem. Commun., 1995, 403.
CH2 Ph (8s)
S
O
Ph (8t)
Ph (8u)
6 T. Yamakawa, H. Jona, K. Niiyama, K. Yamada, T. Iino,
M. Ohkubo, H. Imamura, J. Kusunoki and L. Yang, Int. Pat.,
WO 2007011809, 2007.
7 For selected reports (reviews), see: (a) H. K. Kim, H. K. Yaktin
and R. E. Bambury, J. Med. Chem., 1970, 13, 238; (b) W. Quaglia,
M. Pigini, A. Piergentili, M. Giannella, F. Gentili, G. Marucci,
A. Carrieri, A. Carotti, E. Poggesi, A. Leonardi and C. Melchiorre,
J. Med. Chem., 2002, 45, 1633; (c) Y. Sugita, H. Hosoya,
K. Terasawa, I. Yokoe, S. Fujisawa and H. Sakagami, Anticancer
Res., 2001, 21, 2629.
CH3
6-Cl
H
22
23
24
H
5-CH3
5-
OMe
5-Cl
O
O
O
Ph (8v)
Ph (8w)
Ph (8x)
97
96
97
11 : 1 98
9.0 : 1 96
15 : 1 95
H
25
H
O
Ph (8y)
93
8.0 : 1 92
a
Unless specified, see the Experimental section for reaction conditions.
c
Yield of isolated product. Determined by H NMR analysis of the
b
1
d
crude mixture. Determined by HPLC analysis. Room temperature.
e
8 For book reviews of asymmetric organocatalysis, see:
(a) A. Berkessel and H. Groger, Asymmetric Organocatalysis,
Wiley, Weinhein, 2005; (b) P. I. Dalko, Enantioselective Organo-
catalysis, Wiley, Weinhein, 2007; (c) P. M. Pinko, Hydrogen
Bonding in Organic Synthesis, Wiley, Weinhein, 2009.
9 For selected reports (reviews) regarding the cascade one-pot
reaction, see: (a) T. Dudding, A. M. Hafez, A. E. Taggi,
T. R. Wagerle and T. Lectka, Org. Lett., 2002, 4, 387;
(b) J. W. Yang, M. T. H. Fonseca and B. List, J. Am. Chem.
Soc., 2005, 127, 15036; (c) D. Enders, M. R. M. Huttl, C. Grondal
and G. Raabe, Nature, 2006, 441, 861; (d) Y. Wang, X.-F. Liu and
L. Deng, J. Am. Chem. Soc., 2006, 128, 3928; (e) M. Marigo,
S. Bertelsen, A. Landa and K. A. Jørgensen, J. Am. Chem. Soc.,
2006, 128, 5475; (f) H. Sunden, I. Ibrahem, G.-L.
Zhao, L. Eriksson and A. Cordova, Chem.–Eur. J., 2007, 13,
574; (g) W. Wang, H. Li, J. Wang and L. Zu, J. Am.
Chem. Soc., 2006, 128, 10345; (h) B. Tan, P. Chua, X. Zeng,
M. Lu and G. Zhong, Org. Lett., 2008, 10, 3489; (i) M. Lu, D. Zhu,
Y. Lu, Y. Hou, B. Tan and G. Zhong, Angew. Chem., Int. Ed.,
2008, 47, 10187; (j) D. Zhu, M. Lu, P. Chua, B. Tan, F. Wang,
X. Yang and G. Zhong, Org. Lett., 2008, 10, 4585; (k) B. Tan,
Z. Shi, P. Chua, Y. Li and G. Zhong, Angew. Chem., Int. Ed., 2009,
48, 758.
analysis of the Ts-derived spiro chromanone–thiochroman 12
(see ESIw).
Because of the potential biological activities exhibited
by the spiro ring system, structural elaboration of the
spiro 4-chromanone core is also extremely important. Spiro
chromanone–thiochromanone complex 9 has been considered
as a useful intermediate and thus we wish to discover an
efficient way to afford it. Surprisingly, the oxidation of 8a via
2-iodoxybenzoic acid (IBX) afforded the desired compound 9
with an excellent reaction yield (93%) but without any loss
of enantiomeric excess (from 97% ee to 97% ee) [eqn (1)].
Meanwhile, the large scale synthesis from 0.5 g of 6a
demonstrated that there was no obvious alteration on the
reaction results (94% yield, 7.9: 1 d.r., and 97% ee).
10 T. Okino, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2003,
125, 12672.
11 S. H. McCooey and S. J. Connon, Angew. Chem., 2005, 117, 6525;
S. H. McCooey and S. J. Connon, Angew. Chem., Int. Ed., 2005,
44, 6367.
ð1Þ
In conclusion, we have developed an efficient asymmetric
cyclization reaction, catalyzed by our developed chiral
12 CCDC 784884 (compound 12) contains supplementary crystallo-
graphic data for this paper.
c
9234 Chem. Commun., 2010, 46, 9232–9234
This journal is The Royal Society of Chemistry 2010