Organometallics 2011, 30, 379–382 379
DOI: 10.1021/om1010116
Bis(pyridylimino)isoindolato-Iridium Complexes as
Epoxidation Catalysts for Alkenes
ꢀ
Jose A. Camerano, Christoph Samann, Hubert Wadepohl, and Lutz H. Gade*
€
€
Anorganisch-Chemisches Institut, Universitat Heidelberg, Im Neuenheimer Feld 270,
69120 Heidelberg, Germany
Received October 25, 2010
Summary: The reaction of the sodium salts of ligands 1a,b (1a =
development of efficient Ir-catalyzed allylic substitutions,6
C-C and C-X couplings,7 cycloadditions,8 and hydrosilyla-
tions9 as well as alkane dehydrogenations10 indicate the rapid
expansion of this field. In contrast, very little is known about
iridium in oxidation catalysis. The use of iridium complexes
as epoxidation catalysts has been barely developed,11 prob-
ably due to the low activity in this kind of catalysis as repor-
ted in some early papers.12
The choice of the appropriate ancillary ligands is particu-
larly crucial in the development of oxidation catalysts, since
they have to withstand the reactivity of the oxidants employed.
Monoanionic meridionally coordinating tridentate (“pincer”)
ligand systems have proved to give rise to molecular catalysts
1,3-bis(2-(5-(3,5-xylyl)pyridyl)imino)-5,6-dimethylisoindole, 1b =
1,3-bis(2-(4-tert-butylpyridyl)imino)-5,6-dimethylisoindole)
with [Ir(μ-Cl)(COD)]2 (COD = cyclooctadiene) and [Ir(μ-Cl)-
(C2H4)2]2 afforded the corresponding isoindolato complexes
[{BPI(1a,b)}IrI(COD)] (2a,b) and [{BPI(1a,b)}IrI(C2H4)2]
(3a,b), respectively. The catalytic activity of the complexes
2a,b was tested in the epoxidation of a wide range of non-
electron-rich olefins, using PPO (PPO = 3-phenyl-2-(phenyl-
sulfonyl)-1,2-oxaziridine) as oxidizing agent, giving the corre-
sponding epoxides in moderate to high yields.
Whereas the applications of rhodium in molecular cata-
lysis are now innumerable,1 the development of catalytic
processes involving its heavier congener iridium has pro-
gressed more slowly.2 The latter has been extensively em-
ployed in the quest for reactive and structural models of
intermediates in the mechanistic cycles of 4d platinum metals
and, in particular, rhodium.3 However, iridium complexes
have proved to be active and selective catalysts in the pro-
duction of both bulk chemicals, such as the carbonylation of
methanol,4 as well as fine chemicals, as exemplified by an
ever-growing number of enantioselective hydrogenations of
CdC and CdX bonds in prochiral substrates.5 The recent
(7) Recent reviews: (a) Ishii, Y.; Sakaguchi, S. Bull. Chem. Soc. Jpn.
2004, 77, 909. (b) Fujita, K.; Yamaguchi, R. Synlett 2005, 560. See also.
(c) Casalnuovo, A. L.; Calabrese, J.; Milstein, D. J. Am. Chem. Soc. 1988,
€
110, 6738. (d) Togni, A.; Dorta, R.; Kollner, C.; Pioda, G. Pure Appl. Chem.
1998, 70, 1477. (e) Field, L. S.; Messerle, B. A.; Wren, S. L. Organometallics
2003, 22, 4393. (f) Carter, C. A. G.; Vogels, C. M.; Harrison, D. J.; Gagnon,
M. K. J.; Norman, D. W.; Langler, R. F.; Baker, R. T.; Westcott, S. A.
Organometallics 2001, 20, 2130.
(8) (a) Takeuchi, R. Synlett 2002, 1954. (b) Shibata, T.; Tsuchikama, K.
Chem. Commun. 2005, 6017. (c) Jeong, N.; Kim, D. H.; Choi, J. H. Chem.
Commun. 2004, 1134. (d) Carmona, D.; Lamata, M. P.; Viguri, F.; Rodriguez,
R.; Oro, L. A.; Lahoz, F. J.; Balana, A. I.; Tejero, T.; Merino, P. J. Am. Chem.
Soc. 2005, 127, 13386.
~
*To whom correspondence should be addressed. Fax: þ49-6221-
545609. E-mail: lutz.gade@uni-hd.de.
(1) Rhodium Catalyzed Organic Reactions; Edwards, S. A., Ed.; Wiley-
VCH: Weinheim, Germany, 2006.
(2) Iridium Complexes in Organic Synthesis; Oro, L. A., Claver, C.,
Eds.; Wiley-VCH: Weinheim, Germany, 2009.
(3) De Vries, J.-G.; Elsevier, C. J. Handbook of Homogeneous Hydro-
(9) See for example: (a) Esteruelas, M. A.; Lahoz, F. J.; Onate, E.;
Oro, L. A.; Rodriguez, L. Organometallics 1996, 15, 823. (b) Klei, S. R.;
Tilley, T. D.; Bergman, R. G. Organometallics 2002, 21, 4648. (c) Cipot, J.;
McDonald, R.; Ferguson, M. J.; Schatte, G.; Straditto, M. Organometallics
2007, 26, 594.
(10) (a) Krogh-Jespersen, K.; Czerw, M.; Summa, N.; Renkema,
K. B.; Achord, P. A.; Goldman, A. S. J. Am. Chem. Soc. 2002, 124,
€
genation; Wiley-VCH: Weinheim, Germany, 2007.
11404. (b) Gottker-Schnetmann, I.; White, P.; Brookhart, M. J. Am. Chem.
(4) (a) Brodzky, D.; Denise, B.; Pannetier, G. J. Mol. Catal. 1977, 2,
149. (b) Matsumoto, T.; Mizoroki, T.; Ozaki, A. J. Catal. 1978, 51, 96.
(c) Foster, D. Inorg. Chem. 1972, 11, 473.
(5) (a) Handgraff, J.-W.; Reek, J. N. H.; Meijer, E. J. Organometallics
2003, 22, 3150. (b) Spogliarich, R.; Farnetti, E.; Kaspar, J.; Graziani, M.;
Cesarotti, E. J. Mol. Catal. 1989, 50, 19. (c) Spogliarich, R.; Vidotto, S.;
Farnetti, E.; Graziani, M.; Verma Gulati, N. Tetrahedron: Asymmetry 1989,
45, 5703. (d) Zhang, X.; Kumobayashi, H.; Tayaka, H. Tetrahedron:
Asymmetry 1994, 5, 1179. (e) Maillet, C.; Praveen, T.; Janvier, P.; Minguet,
S.; Evain, M.; Saluzzo, C.; Tommasino, M. L.; Bujoli, B. J. Organomet.
Soc. 2004, 126, 1804. (c) Goldman, A. S.; Roy, A. H.; Huang, Z. Ahuja, R.;
Schinsli, W.; Brookhart, M. Science 2006, 312, 257 and references cited
therein.
(11) The most widely developed methods for the epoxidation of
olefins involve complexes of the early and middle transition metals
and some late transition metals such as palladium and copper: Adolfs-
€
son, H. In Modern Oxidation Methods, 1st ed.; Backvall, J.-E., Ed.; Wiley:
Weinheim, Germany, 2004.
(12) (a) Morvillo, A.; Bressan, M. J. Mol. Catal. 1986, 37, 63.
(b) Lyons, J. E.; Turner, J. O. J. Org. Chem. 1972, 37, 2881. (c) Lyons,
J. E.; Turner, J. O. Tetrahedron Lett. 1972, 2903. (d) Fusi, A.; Ugo, R.; Fox,
F.; Pasini, A.; Cenisi, S. J. Organomet. Chem. 1971, 26, 417.
(13) (a) Albrecht, M.; van Koten, G. Angew. Chem. 2001, 113, 3866;
Angew. Chem., Int. Ed. 2001, 40, 3750. (b) van der Boom, M.; Milstein,
D. Chem. Rev. 2003, 103, 1759.
(14) (a) Siegl, W. O. J. Org. Chem. 1977, 42, 1872. (b) Siegl, W. O.
Inorg. Nucl. Chem. Lett. 1974, 10, 825. (c) Chavez, F. A.; Mascharak, P. K.
Acc. Chem. Res. 2000, 33, 539. (b) Farinas, E. T.; Nguyen, C. V.; Mascharak,
P. K. Inorg. Chim. Acta 1997, 263, 17. (c) Saussine, L.; Brazi, E.; Robine, A.;
Mimoun, H.; Fischer, J.; Weiss, R. J. Am. Chem. Soc. 1985, 107, 3534.
(d) Krimm, H. British Patent 743, 940. (e) Siggelkow, B.; Meder, M. B.;
Galka, C. H.; Gade, L. H. Eur. J. Inorg. Chem. 2004, 3424. (f) Langlotz,
B. K.; Lloret-Fillol, J.; Gross, J. H.; Wadepohl, H.; Gade, L. H. Chem. Eur. J.
2008, 14, 10267.
€
Chem. 2002, 67, 8191. (f) Blaser, H.-U.; Buser, H.-P.; Hausel, R.; Jalett, H.-
P.; Spindler, F. J. Organomet. Chem. 2001, 621, 34. (g) Woodmansee, D. H.;
M€uller, M.-A.; Neuburger; Pfaltz, A. Chem. Sci. 2010, 1, 72. (h) Baeza, A.;
Pfaltz, A. Chem. Eur. J. 2010, 16, 4003. (i) Schrems, M. G.; Pfaltz, A. Chem.
Commun 2009, 6210. (j) Hou, D.-R.; Reibenspies, J.; Colacot, T. J.; Burgess,
K. Chem. Eur. J. 2001, 7, 5391. (k) Chakka, S. K.; Peters, B. K.; Andresson,
P. G.; Maguire, G. E. M.; Kruger, H. G.; Govender, T. Tetrahedron:
Asymmetry 2010, 21, 2295. (l) Verendel, J. H.; Zhou, T.; Li, J.-Q.;
Paptchikhine, A.; Lebedev, O.; Andersson, P. G. J. Am. Chem. Soc. 2010,
132, 8880.
(6) Recent reviews: (a) Takeuchi, R.; Kezuka, S. Synthesis 2006, 3349.
(b) Helmchen, G.; Dahnz, A.; D€ubon, P.; Schelwies, M.; Weihofen, R. Chem.
Commun 2007, 675. (c) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010,
43, 1461.
r
2011 American Chemical Society
Published on Web 01/04/2011
pubs.acs.org/Organometallics