A. A. Dörr, W. D. Lubell / Tetrahedron Letters 52 (2011) 2159–2161
2161
1205; (c) Ikeda, Y.; Kawahara, S.-i.; Taki, M.; Kuno, A.; Hasegawa, T.; Taira, K.
Protein Eng. 2003, 16, 699–706.
group on the pyrrolylalanine residue may reduce the amide cis-
isomer population relative to
p-enriched arylalanine ana-
7. (a) de la Hoz, A.; Díaz-Ortiz, A.; Gómez, M. V.; Mayoral, J. A.; Moreno, A.;
Sánchez-Migallón, A. A.; Vásquez, E. Tetrahedron 2002, 57, 5421–5428; (b)
Bladon, C. M. J. Chem. Soc., Perkin Trans. 1 1990, 1151–1158; (c) Herz, W.;
Dittmer, K.; Cristol, S. J. J. Am. Chem. Soc. 1948, 70, 504–507.
8. (a) Rousseau, J.-F.; Dodd, R. H. J. Org. Chem. 1998, 63, 2731–2737; (b) Beecher, J.
E.; Tirrell, D. A. Tetrahedron Lett. 1998, 39, 3927–3930.
9. Yamano, K.; Shirahama, H. Tetrahedron 1992, 48, 1457–1464.
10. (a) Wasserman, H. H.; Long, Y. O.; Zhang, R.; Parr, J. Heterocycles 2002, 58, 393–
403; (b) Wasserman, H. H.; Long, Y. O.; Zhang, R.; Parr, J. Tetrahedron Lett. 2002,
43, 3351–3353.
logs.17,26–33
Sulfonamide protection gave access to the desired pyrrolylala-
nine target 9, which could be coupled to the N-terminal of a pep-
tide; however, attempts (TBAF in THF, SmI2 in DMPU/THF, and
Mg in MeOH) were unsuccessful in removing the sulfonyl groups
from dipeptide 10. Alternative protection, such as the pyridine-2-
sulfonyl group, which has been reported to be cleaved under
milder conditions (Mg/MeOH or SmI2/DMPU/THF)34,35 is currently
being explored to enhance the utility of 2-pyrrolylalanine in pep-
tide chemistry and will be described in future.
11. Adamczyk, M.; Johnson, D. D.; Reddy, R. E. Tetrahedron: Asymmetry 2000, 11,
3063–3068.
12. Masquelin, T.; Broger, E.; Müller, K.; Schmid, R.; Obrecht, D. Helv. Chim. Acta
1994, 77, 1395–1411.
In conclusion, methodology has been developed for the synthe-
sis of protected 2-pyrrolylalanine from aspartic acid. Protection of
2-pyrrolylalanine with sulfonyl groups has allowed insertion of
this unnatural amino acid into a dipeptide model. Considering 2-
pyrrolylalanine as an asparagine and histidine mimic, opportunity
exists for employing this surrogate for studying structure–function
relationships in peptide science and medicinal chemistry.
13. Sarkar, K.; Singha, S. K.; Chattopadhyay, S. K. Tetrahedron: Asymmetry 2009, 20,
1719–1721.
14. Sabatino, D.; Proulx, C.; Klocek, S.; Bourguet, C. B.; Boeglin, D.; Ong, H.; Lubell,
W. D. Org. Lett. 2009, 11, 3650–3653.
15. Goupil, E.; Tassy, D.; Bourguet, C.; Quiniou, C.; Wisehart, V.; Petrin, D.; Le
Gouill, C.; Devost, D.; Zingg, H. H.; Bouvier, M.; Saragovi, H. U.; Chemtob, S.;
Lubell, W. D.; Claing, A.; Hebert, T. E.; Laporte, S. A. J. Biol. Chem. 2010, 285,
25624–25636.
16. (a) Hansford, K. A.; Dettwiler, J. E.; Lubell, W. D. Org. Lett. 2003, 5, 4887–4890;
(b) Dettwiler, J. E.; Lubell, W. D. Can. J. Chem. 2004, 82, 318–324.
17. Dörr, A. A.; Lubell, W. D. Biopolymers 2007, 88, 290–299.
18. Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6, 3217–3219.
19. (a) Hansford, K. A.; Zanzavora, V.; Dorr, A. A.; Lubell, W. D. J. Comb. Chem. 2004,
6, 893–898; (b) Dorr, A. A.; Lubell, W. D. Can. J. Chem. 2007, 85, 1006–1017.
20. Joule, J. A.; Mills, J. K. Heterocyclic Chemistry, 4th ed.; Springer: New York, 2000.
p 246.
21. (a) Tshibaka, T.; Roche, I. U.; Dufresne, S.; Lubell, W. D.; Skene, W. G. J. Org.
Chem. 2009, 74, 9497–9500; (b) Jolicoeur, B.; Lubell, W. D. Can. J. Chem. 2008,
86, 213–218; (c) Jolicoeur, B.; Lubell, W. D. Org. Lett. 2006, 8, 6107–6110.
22. Jolicoeur, B.; Chapman, E. E.; Thompson, A.; Lubell, W. D. Tetrahedron 2006, 62,
11531–11563.
23. (a) Dettwiler, J. E.; Lubell, W. D. J. Org. Chem. 2003, 68, 177–179; (b) Zhao, M.;
Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. J. Org.
Chem. 1999, 64, 2564–2566.
Acknowledgments
The authors would like to thank the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) and Fond Québécois
de la Recherche sur la Nature et les Technologies (FQRNT) for the
financial support. We thank Dr. Alexandra Fürtös of the Université
de Montréal Mass Spectrometry facility for mass spectral analyses
and Dr. Phan viet Minh Tan and Dr. Cédric Malveau of the Regional
High-Field NMR Laboratory for their assistance in running 2D
NOESY/TOCSY experiments.
24. (a) Roemmele, R. C.; Rapoport, H. J. Org. Chem. 1988, 53, 2367–2371; (b)
Roemmele, R. C.; Rapoport, H. J. Org. Chem. 1989, 54, 1866–1875.
25. Carlsen, P. H. J.; Katsuki, K.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46,
3936–3938.
26. MacArthur, M. W.; Thornton, J. M. J. Mol. Biol. 1991, 218, 397–412.
27. We have defined the term prolyl amide as ‘a tertiary amide composed of the
pyrrolidine nitrogen of the prolyl residue and the carbonyl of the N-terminal
residue’. Halab, L.; Lubell, W. D. J. Am. Chem. Soc. 2002, 124, 2474–2484.
28. (a) Hetzel, R.; Wüthrich, K. Biopolymers 1979, 18, 2589–2606; (b) Grathwohl,
C.; Wüthrich, K. Biopolymers 1976, 15, 2043–2057.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a)Synthesis of Peptides and Peptidomimetics: Houben-Weyl Methods in Organic
Chemistry; Goodman, M., Felix, A., Morodwe, L., Toniolo, C., Eds.; Thieme:
Stuttgart, D, 2001; (b)Peptidomimetics Protocols; Kazmierski, W. M., Ed.;
Humana Press: Toyota, NJ, USA, 1999.
2. Somogyi, L.; Haberhauer, G.; Rebek, J., Jr. Tetrahedron 2001, 57, 1699–1708.
3. (a) Falorni, M.; Giacomelli, G.; Porcheddu, A.; Dettori, G. Eur. J. Org. Chem. 2000,
3217–3222; (b) Plant, A.; Stieber, F.; Scherkenbeck, J.; Losel, P.; Dyker, H. Org.
Lett. 2001, 3, 3427–3430; (c) Chakraborty, T. K.; Mohan, B. K.; Kumar, S. K.;
Kunwar, A. C. Tetrahedron Lett. 2002, 43, 2589–2592.
29. (a) Yao, J.; Brüschweiler, R.; Dyson, H. J.; Wright, P. E. J. Mol. Biol. 1994, 116,
12051–12052; (b) Yao, J.; Dyson, H. J.; Wright, P. E. J. Mol. Biol. 1994, 243, 754–
766; (c) Yao, J.; Feher, V. A.; Espejo, B. F.; Reymond, M. T.; Wright, P. E.; Dyson,
H. J. J. Mol. Biol. 1994, 243, 736–753; (d) Dyson, H. J.; Rance, M.; Houghten, R. A.;
Lerner, R. A.; Wright, P. E. J. Mol. Biol. 1988, 201, 161–200.
30. Wu, W.-J.; Raleigh, D. P. Biopolymers 1998, 45, 381–394.
31. Stewart, D. E.; Sarkar, A.; Wampler, J. E. J. Mol. Biol. 1990, 214, 253–260.
32. (a) Stimson, E. R.; Montelione, G. T.; Meinwald, Y. C.; Rudolph, R. K. E.;
Scheraga, H. A. Biochemistry 1982, 21, 5252–5262; (b) Juy, M.; Lam-Thanh, H.;
Linter, K.; Fermandjian, S. Int. J. Peptide Protein Res. 1983, 22, 437–449.
33. Thomas, K. M.; Naduthambi, D.; Zondlo, N. J. J. Am. Chem. Soc. 2005, 128, 2216–
2217.
4. Mann, E.; Kessler, H. Org. Lett. 2003, 5, 4567–4570.
5. (a) Perrotta, E.; Altamura, M.; Barani, T.; Bindi, S.; Giannotti, D.; Harmat, N. J. S.;
Nannicini, R.; Maggi, A. J. Comb. Chem. 2001, 3, 453–460; (b) Lewis, J. G.;
Bartlett, P. A. J. Comb. Chem. 2003, 5, 278–284; (c) Edwards, A. A.; Ichihara, O.;
Murfin, S.; Wilkes, R.; Whittaker, M.; Watkin, D. J.; Fleet, G. W. J. J. Comb. Chem.
2004, 6, 230–238.
34. Goulaic-Dubois, C.; Guggisberg, A.; Hesse, M. J. Org. Chem. 1995, 60, 5969–
5972.
35. Han, H.; Bae, I.; Yoo, E. J.; Lee, J.; Do, Y.; Chang, S. Org. Lett. 2004, 6, 4109–4112.
6. (a) Heyl, D. L.; Dandabathula, M.; Kurtz, K. R.; Mousigian, C. J. Med. Chem. 1995,
38, 1242–1246; (b) Hsieh, K.-h.; Jorgensen, E. C. J. Med. Chem. 1979, 22, 1199–