776 Crystal Growth & Design, Vol. 11, No. 3, 2011
Singh and Baruah
stirred for 15 min. A yellow-colored precipitate of the product was
filtered and air-dried. Yield: 90%. IR (KBr, cm-1): 3461 (s), 3410
(s), 2949 (w), 1763 (m), 1702 (s), 1614 (m), 1518 (m), 1433 (m), 1396
(s), 1354 (s), 1302 (m), 1284 (w), 1234 (w), 1192 (m), 1179 (m), 1120
(w), 1096 (w), 1007 (w), 812 (w), 730 (w). 1H NMR (400 MHz,
DMSO-d6): 8.77 (s, 2H), 8.67 (s, 2H), 8.15 (s, 2H), 6.57 (s, 4H), 6.40
(s, 2H), 3.75 (s, 4H), 2.74 (s, 4H). 13C NMR (DMSO-d6): 166.1,
145.2, 143.8, 136.9, 128.8, 119.3, 117.3, 116.0, 115.6, 33.0. ESI-MS:
489.201 [M þ Hþ].
Hughes, D. S.; Hursthouse, M. B.; Lancaster, R. W.; Tavener, S.;
Threlfall, T. L. Chem. Commun. 2001, 603. (g) Nangia, A.; Desiraju,
G. R. Chem. Commun. 1999, 605. (h) Ma, B.-Q.; Coppens, P. Cryst.
Growth Des. 2004, 4, 1377. (i) Moorthy, J. N.; Natarajan, N. Cryst.
Growth Des. 2008, 8, 3360.
(3) (a) Sarma, J. A. R. P.; Desiraju, G. R. Polymorphism and Pseudo-
polymorphism in Organic Crystals:
A Cambridge Structural
Database Study; In Crystal Engineering; Seddon, K. R., Zaworotko,
M., Eds.; Kluwer: Norwell, MA, 1999; p 325. (b) Jetti, R. K. R.; Boese,
R.; Thallapally, P. K.; Desiraju, G. R. Cryst. Growth Des. 2003, 3,
1033.
2a: Solvate 2a was crystallized from a solution of DMF as red
block. IR (KBr, cm-1): 3461 (s), 3408 (s), 2924 (w), 1763 (m), 1703
(s), 1661 (m), 1518 (w), 1434 (m), 1395 (s), 1354 (s), 1302 (w), 1283
(w), 1192 (w), 1152 (w), 1120 (m), 1095 (m), 1006 (w), 812 (w), 729
(w). 1H NMR (400 MHz, DMSO-d6): 8.80 (s, 2H), 8.70 (s, 2H), 8.16
(s, 2H), 7.94 (s, 2H), 6.57 (dd, 4H, J = 4.4 Hz), 6.40 (d, 2H, J = 8.0
Hz), 3.74 (t, 4H, J = 7.6 Hz), 2.88 (s, 12H), 2.73 (t, 4H, J = 7.6 Hz).
2b: The crystals of solvate 2b were obtained as yellow blocks from
a solution of compound 2 in DMSO. IR (KBr, cm-1): 3461 (s), 3410
(s), 2935 (w), 1763 (m), 1702 (s), 1656 (w), 1620 (m), 1524 (m), 1435
(m), 1396 (s), 1354 (s), 1302 (m), 1284 (w), 1234 (w), 1192 (m), 1179
(4) (a) Sarma, B.; Roy, S.; Nangia, A. Chem. Commun. 2006, 4918.
(b) Saha, B. K.; Nangia, A. CrystEngComm 2006, 8, 440.
(5) (a) Byrn, S. R. Solid-State Chemistry of Drugs; Academic:
New York, 1982. (b) Desiraju, G. R. Science 1996, 278, 404. (c) Jetti,
R. K. R.; Boese, R.; Sarma, J. A. R. P.; Reddy, L. S. R.; Vishweshwar, P.;
Desiraju, G. R. Angew. Chem., Int. Ed. 2003, 42, 1963. (d) Yu, L.
ꢀ
ꢀ
ꢀ ꢀ
J. Am. Chem. Soc. 2003, 125, 6380–6381. (e) Kalman, A.; Fabian, L.;
ꢀ
Argay, G.; Bernath, G.; Gyarmati, Z. J. Am. Chem. Soc. 2003, 125,
34. (f) Duntiz, J. D.; Bernstein, J. Acc. Chem. Res. 1995, 28, 193.
(g) Hennigar, T. L.; MacQuarrie, D. C.; Losier, P.; Rogers, R. D.;
Zaworotko, M. J. Angew. Chem., Int. Ed. 1997, 36, 972.
1
(m), 1120 (w), 1096 (w), 1075 (m), 1007 (w), 812 (w), 730 (w). H
(6) (a) Steiner, T. Angew. Chem., Int. Ed. 2002, 41, 48. (b) Nangia, A.
Acc. Chem. Res. 2008, 41, 595. (c) Jeffrey, G. A.; Saenger, W.
Hydrogen Bonding in Biological Structures; Springer Verlag: Berlin,
1991. (d) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford
University Press: New York, 1997. (e) Desiraju, G. R. Acc. Chem. Res.
2002, 35, 565. (f) Desiraju, G. R.; Steiner, T. The Weak Hydrogen
Bond in Structural Chemistry and Biology; Oxford University Press:
Oxford, U.K., 1999. (g) Bernstein, J. In Organic Solid State Chem-
istry; Desiraju, G. R., Ed.; Elsevier: Amsterdam, 1987; p 471. (h)
Blagden, R.; Davey, R. J.; Lieberman, H. F.; Williams, L.; Payne, R.;
Roberts, R.; Rowe, R.; Docherty, R. J. Chem Soc. Faraday Trans.
1998, 94, 1035. (i) Buttar, D.; Charlton, M. H.; Dochetry, R.; Starbuck,
J. J. Chem. Soc. Perkin Trans. 2 1998, 763. (j) Starbuck, J.; Docherty,
R.; Charlton, M. H.; Buttar, D. J. Chem. Soc. Perkin Trans. 2 1999,
677. (k) Kumar, V. S. S.; Addlagatta, A.; Nangia, A.; Robinson, W. T.;
Broder, C. K.; Mondal, R.; Evans, I. R.; Howard, J. A. K.; Allen, F. H.
NMR (400 MHz, DMSO-d6): 8.81 (s, 2H), 8.72 (s, 2H), 8.20 (s, 2H),
6.61 (dd, 4H, J = 4.0 Hz), 6.47 (d, 2H, J = 8.0 Hz), 3.75 (t, 4H, J =
7.6 Hz), 2.75 (t, 4H, J = 7.6 Hz).
2c: The solvate 2c was obtained by crystallization of compound 2
from pyridine solution as yellow blocks. IR (KBr, cm-1): 3460 (s),
3410 (s), 2945 (w), 1761 (m), 1707 (s), 1610 (m), 1517 (m), 1432 (m),
1395 (s), 1353 (m), 1297 (w), 1281 (w), 1178 (s), 1119 (s), 1094 (m),
1006 (m), 957 (w), 812 (w), 727 (w). 1H NMR (400 MHz, DMSO-
d6): 8.80 (s, 2H), 8.70 (s, 2H), 8.57 (d, 4H, J = 5.6 Hz), 8.16 (s, 2H),
7.84 (t, 4H, J = 7.6 Hz), 7.38 (t, 4H, J = 6.4 Hz), 6.57 (dd, 4H, J =
4.0 Hz), 6.41 (d, 2H, J = 8.0 Hz), 3.76 (t, 4H, J = 7.6 Hz), 2.76
(t, 4H, J = 7.6 Hz).
2d: A solution of compound 2 in pyridine and quinoline resulted
in the formation of crystals of solvate 2d as red blocks. IR (KBr,
cm-1): 3460 (s), 3412 (s), 2924 (w), 1763 (m), 1714 (s), 1597 (w), 1503
(w), 1434 (w), 1392 (s), 1353 (s), 1281 (w), 1194 (m), 1121 (m), 1094
€
Angew. Chem., Int. Ed. 2002, 41, 3848. (l) Aakeroy, C. B.; Desper, J.;
1
Urbina, J. F. Chem. Commun. 2005, 2820.
(m),, 957 (w), 801 (w), 729 (w). H NMR (400 MHz, DMSO-d6):
(7) (a) Threlfall, T. L. Org. Process Res. Dev. 2000, 4, 384. (b) Todd,
A. M.; Anderson, K. M.; Byrne, P.; Goeta, A. E.; Steed, J. W. Cryst.
Growth Des. 2006, 6, 1750. (c) Cabeza, A. J. C.; Day, G. M.;
Motherwell, W. D. S.; Jones, W. J. Am. Chem. Soc. 2006, 128,
14466. (d) Davey, R. J.; Blagden, N.; Righini, S.; Alison, S.; Quayle,
M. J.; Fuller, S. Cryst. Growth Des. 2001, 1, 59. (e) Babu, N. J.; Nangia,
A. Cryst. Growth Des. 2006, 6, 1995.
8.89 (m, 4H), 8.77 (s, 6H), 8.36 (d, 6H, J = 8.0 Hz), 8.13 (s, 2H),
8.00 (dd, 12H, J = 8.0 Hz), 7.76 (t, 6H, J = 6.8 Hz), 7.61 (t, 6H,
J = 6.8 Hz), 7.53 (dd, 6H, J = 4.4 Hz), 6.58 (dd, 4H, J = 4.0 Hz),
6.40 (d, 2H, J = 8.4 Hz), 3.74 (t,4H, J = 7.2 Hz), 2.74 (t, 4H, J =
7.2 Hz).
(8) (a) Kishikawa, K.; Tsubokura, S.; Kohmoto, S.; Yamamoto, M.;
Yamaguchi, K. J. Org. Chem. 1999, 64, 7568. (b) Kishikawa, K.;
Iwashima, C.; Kohmoto, S.; Yamaguchi, K.; Yamamoto, M. J. Chem.
Soc. Perkin Trans. 1 2000, 2217. (c) Degenhardt, C., III; Shortell,
D. B.; Adams, R. D.; Shimizu, K. D. Chem.Commun. 2000, 929. (d)
Degenhardt, C. F.; Lavin, J. M.; Smith, M. D.; Shimizu, K. D. Org.
Lett. 2005, 7, 4079. (e) Rasberry, R. D.; Smith, M. D.; Shimizu, K. D.
Org. Lett. 2008, 13, 2889. (f) Colquhoun, H. M.; Williams, D. J.; Zhu,
Z. J. Am. Chem. Soc. 2002, 124, 13346. (g) Cheney, M. L.; McManus,
G. J.; Perman, J. A.; Wang, Z.; Zaworotko, M. J. Cryst. Growth Des.
2007, 7, 616. (h) Barooah, N.; Sarma, R. J.; Baruah, J. B. Cryst. Growth
Des. 2003, 3, 639. (i) Baruah, J. B.; Karmakar, A.; Barooah, N.
CrystEngComm 2008, 10, 151. (j) Singh, D.; Baruah, J. B. CrystEng-
Comm 2009, 11, 2688. (k) Singh, D.; Bhattacharyya, P.; Baruah, J. B.
Cryst. Growth Des. 2010, 10, 348. (l) Santra, R.; Biradha, K. Cryst.
Growth Des. 2009, 9, 4969.
Acknowledgment. The authors thank Department of
Science and Technology, New Delhi (India), for financial
support. D.S. is thankful to Council of Scientific and Industrial
Research, New Delhi (India), for Senior Research Fellowship.
Supporting Information Available: The CIF of the structures are
deposited to the Cambridge Crystallographic Database UK and has
the CCDC nos. 793834-793840. The PXRD, TG, DSC of the
compounds, and hydrogen bond table for 1 and 1b. This material
References
(1) (a) Threlfall, T. L. Analyst 1995, 120, 2435. (b) Stezowski, J. J.;
Parker, W.; Hilgenkamp, S.; Gdaniec, M. J. Am. Chem. Soc. 2001, 123,
3919. (c) Thaimattam, R.; Xeu, F.; Sarma, J. A. R. P.; Mak, T. C. W.;
Desiraju, G. R. J. Am. Chem. Soc. 2001, 123, 4432. (d) Kumar,
V. S. S.; Pigge, F. C.; Rath, N. P. Cryst. Growth Des. 2004, 4, 1217. (e)
Balasubramaniam, V.; Valiyaveettil, S. Cryst. Growth Des. 2004, 4,
1403. (f) Kumar, V. S. S.; Kuduva, S. S.; Desiraju, G. R. J. Chem. Soc.,
Perkin Trans. 2 1999, 1069. (g) Kim, Y.-S.; Rousseau, R. W. Cryst.
Growth Des. 2004, 4, 1211.
(2) (a) Herbstein, F. H. Cryst. Growth Des. 2004, 4, 1419. (b) Hosakawa,
T.; Datta, S.; Sheth, A. R.; Brooks, N. R.; Young, V. G.; Grant, D. J. W.
Cryst. Growth Des. 2004, 4, 1195. (c) Banerjee, R.; Bhatt, P. M.;
Desiraju, G. R. Cryst. Growth Des. 2006, 6, 1468. (d) Clarke, H. D.;
Arora, K. K.; Bass, H.; Kavuru, P.; Ong, T. T.; Pujari, T.; Wojtas, L.;
Zaworotko, M. J. Cryst. Growth Des. 2010, 10, 2152. (e) Mondal, R.;
Howard, J. A. K. Cryst. Growth Des. 2008, 8, 4359. (f) Bingham, A. L.;
(9) (a) Levin, E D; Rose, J. E. Ann. N.Y. Acad. Sci. 1995, 757, 245.
(b) Pinder, R. M. Nature 1970, 228, 358.
(10) (a) Volkow, N D.; Fowler, J. S.; Gatley, S. J.; Logan, J.; Wang, G-J;
Ding, Y.-S.; Dewey, S. J. Nucl. Med. 1996, 37, 1242. (b) Giampaolo,
P.; Marini, M. A.; Federico, D. S.; Sebastian, F. J.; Ugo, M.; Camilla,
R. M.; Rocco, C. Eur. J. Med. Chem. 1988, 23, 397. (c) Fernandez, C.;
Nieto, O.; Rivas, E.; Montenegro, G.; Fontenla, J. A.; Fernandez-
Mayoralas, A. Carbohydr. Res. 2000, 327, 353. (d) Rodger, I. W.;
Hersom, A. S.; Waigh, R. D. J. Med. Chem. 1979, 22, 117. (e)
Borgman, R. J.; McPhillips, J. J.; Stitzel, R. E.; Goodman, I. J.
J. Med. Chem. 1973, 16, 630.
(11) Urban, J. J.; Cramer, C. J.; Famini, G. R. J. Am. Chem. Soc. 1992,
114, 8226.
(12) (a)Brock, C. P.;Dunitz, J. D. Chem. Mater. 1994, 6, 1118. (b)McGrady,
G. S.; Odlyha, M.; Princea, P. D.; Steed, J. W. CrystEngComm