Page 9 of 10
Journal of the American Chemical Society
J.; Xiao, J., Cooperative Catalysis through Noncovalent
Chemoselective intramolecular allylic C–H amination versus CC
1
2
3
4
5
6
7
8
Interactions. Angew. Chem. Int. Ed. 2013, 52, 1668-1672; (d)
Drover, M. W.; Love, J. A.; Schafer, L. L., Toward anti-
Markovnikov 1-Alkyne O-Phosphoramidation: Exploiting Metal–
Ligand Cooperativity in a 1,3-N,O-Chelated Cp*Ir(III) Complex.
J. Am. Chem. Soc. 2016, 138, 8396-8399.
aziridination through Co(II)-based metalloradical catalysis. Chem.
Sci. 2011, 2, 2361-2366; (c) Jiang, H.; Lang, K.; Lu, H.; Wojtas,
L.; Zhang, X. P., Intramolecular Radical Aziridination of Allylic
Sulfamoyl Azides by Cobalt(II)-Based Metalloradical Catalysis:
Effective Construction of Strained Heterobicyclic Structures.
Angew. Chem. Int. Ed. 2016, 55, 11604-11608; (d) Zhang, Y.;
Dong, X.; Wu, Y.; Li, G.; Lu, H., Visible-Light-Induced
Intramolecular C(sp2)–H Amination and Aziridination of
Azidoformates via a Triplet Nitrene Pathway. Org. Lett. 2018, 20,
4838-4842.
(7) (a) Harvey, M. E.; Musaev, D. G.; Du Bois, J., A Diruthenium
Catalyst for Selective, Intramolecular Allylic C–H Amination:
Reaction Development and Mechanistic Insight Gained through
Experiment and Theory. J. Am. Chem. Soc. 2011, 133, 17207-
17216; (b) Paradine, S. M.; White, M. C., Iron-Catalyzed
Intramolecular Allylic C–H Amination. J. Am. Chem. Soc. 2012,
134, 2036-2039; (c) Paradine, S. M.; Griffin, J. R.; Zhao, J.;
Petronico, A. L.; Miller, S. M.; White, M. C., A manganese catalyst
for highly reactive yet chemoselective intramolecular C(sp3)–H
amination. Nat. Chem. 2015, 7, 987-994.
(8) (a) Rigoli, J. W.; Weatherly, C. D.; Alderson, J. M.; Vo, B. T.;
Schomaker, J. M., Tunable, Chemoselective Amination via Silver
Catalysis. J. Am. Chem. Soc. 2013, 135, 17238-17241; (b) Dolan,
N. S.; Scamp, R. J.; Yang, T.; Berry, J. F.; Schomaker, J. M.,
Catalyst-Controlled and Tunable, Chemoselective Silver-
Catalyzed Intermolecular Nitrene Transfer: Experimental and
Computational Studies. J. Am. Chem. Soc. 2016, 138, 14658-
14667; (c) Weatherly, C.; Alderson, J. M.; Berry, J. F.; Hein, J. E.;
Schomaker, J. M., Catalyst-Controlled Nitrene Transfer by Tuning
Metal:Ligand Ratios: Insight into the Mechanisms of
Chemoselectivity. Organometallics 2017, 36, 1649-1661.
(9) (a) Hayes, C. J.; Beavis, P. W.; Humphries, L. A., Rh(II)-
catalysed room temperature aziridination of homoallyl-carbamates.
Chem. Commun. 2006, 4501-4502; (b) Zalatan, D. N.; Du Bois, J.,
A Chiral Rhodium Carboxamidate Catalyst for Enantioselective
C−H Amination. J. Am. Chem. Soc. 2008, 130, 9220-9221; (c)
Barman, D. N.; Nicholas, K. M., Copper-Catalyzed Intramolecular
C–H Amination. Eur. J. Org. Chem. 2011, 2011, 908-911; (d)
Kong, C.; Jana, N.; Jones, C.; Driver, T. G., Control of the
Chemoselectivity of Metal N-Aryl Nitrene Reactivity: C–H Bond
Amination versus Electrocyclization. J. Am. Chem. Soc. 2016, 138,
13271-13280.
(10) (a) Bess, E. N.; DeLuca, R. J.; Tindall, D. J.; Oderinde, M. S.;
Roizen, J. L.; Du Bois, J.; Sigman, M. S., Analyzing Site
Selectivity in Rh2(esp)2-Catalyzed Intermolecular C–H Amination
Reactions. J. Am. Chem. Soc. 2014, 136, 5783-5789; (b) Kim, Y.;
Park, Y.; Chang, S., Delineating Physical Organic Parameters in
Site-Selective C–H Functionalization of Indoles. ACS Cent. Sci.
2018, 4, 768-775.
(11) (a) Hwang, Y.; Park, Y.; Kim, Y. B.; Kim, D.; Chang, S.,
Revisiting Arene C(sp2)−H Amidation by Intramolecular Transfer
of Iridium Nitrenoids: Evidence for a Spirocyclization Pathway.
Angew. Chem. Int. Ed. 2018, 57, 13565-13569; (b) Hong, S. Y.;
Park, Y.; Hwang, Y.; Kim, Y. B.; Baik, M.-H.; Chang, S., Selective
formation of γ-lactams via C–H amidation enabled by tailored
iridium catalysts. Science 2018, 359, 1016-1021; (c) Park, Y.;
Chang, S., Asymmetric formation of γ-lactams via C–H amidation
enabled by chiral hydrogen-bond-donor catalysts. Nat. Catal. 2019,
2, 219-227.
(12) (a) Li, C.; Villa-Marcos, B.; Xiao, J., Metal−Brønsted Acid
Cooperative Catalysis for Asymmetric Reductive Amination. J.
Am. Chem. Soc. 2009, 131, 6967-6969; (b) Zhao, X.; DiRocco, D.
A.; Rovis, T., N-Heterocyclic Carbene and Brønsted Acid
Cooperative Catalysis: Asymmetric Synthesis of trans-γ-Lactams.
J. Am. Chem. Soc. 2011, 133, 12466-12469; (c) Tang, W.;
Johnston, S.; Iggo, J. A.; Berry, N. G.; Phelan, M.; Lian, L.; Bacsa,
(13) (a) Bizet, V.; Buglioni, L.; Bolm, C., Light-Induced
Ruthenium-Catalyzed
Nitrene
Transfer
Reactions:
A
Photochemical Approach towards N-Acyl Sulfimides and
Sulfoximines. Angew. Chem. Int. Ed. 2014, 53, 5639-5642; (b)
Park, Y.; Park, K. T.; Kim, J. G.; Chang, S., Mechanistic Studies
on the Rh(III)-Mediated Amido Transfer Process Leading to
Robust C–H Amination with a New Type of Amidating Reagent.
J. Am. Chem. Soc. 2015, 137, 4534-4542; (c) Wang, H.; Tang, G.;
Li, X., Rhodium(III)-Catalyzed Amidation of Unactivated C(sp3)–
H Bonds. Angew. Chem. Int. Ed. 2015, 54, 13049-13052; (d)
Hwang, Y.; Park, Y.; Chang, S., Mechanism-Driven Approach To
Develop a Mild and Versatile C−H Amidation through IrIII
Catalysis. Chem. – Eur. J. 2017, 23, 11147-11152; (e) Zhou, Y.;
Engl, O. D.; Bandar, J. S.; Chant, E. D.; Buchwald, S. L., CuH-
Catalyzed Asymmetric Hydroamidation of Vinylarenes. Angew.
Chem. Int. Ed. 2018, 57, 6672-6675.
(14) Jung, H.; Schrader, M.; Kim, D.; Baik, M.-H.; Park, Y.;
Chang, S., Harnessing Secondary Coordination Sphere Interactions
That Enable the Selective Amidation of Benzylic C–H Bonds. J.
Am. Chem. Soc. 2019, 141, 15356-15366.
(15) Xing, Q.; Chan, C.-M.; Yeung, Y.-W.; Yu, W.-Y.,
Ruthenium(II)-Catalyzed Enantioselective γ-Lactams Formation
by Intramolecular C–H Amidation of 1,4,2-Dioxazol-5-ones. J.
Am. Chem. Soc. 2019, 141, 3849-3853.
(16) (a) Sigman, M. S.; Harper, K. C.; Bess, E. N.; Milo, A., The
Development of Multidimensional Analysis Tools for Asymmetric
Catalysis and Beyond. Acc. Chem. Res. 2016, 49, 1292-1301; (b)
Toste, F. D.; Sigman, M. S.; Miller, S. J., Pursuit of Noncovalent
Interactions for Strategic Site-Selective Catalysis. Acc. Chem. Res.
2017, 50, 609-615; (c) Santiago, C. B.; Guo, J.-Y.; Sigman, M. S.,
Predictive and mechanistic multivariate linear regression models
for reaction development. Chem. Sci. 2018, 9, 2398-2412.
(17) (a) Piou, T.; Romanov-Michailidis, F.; Romanova-
Michaelides, M.; Jackson, K. E.; Semakul, N.; Taggart, T. D.;
Newell, B. S.; Rithner, C. D.; Paton, R. S.; Rovis, T., Correlating
Reactivity and Selectivity to Cyclopentadienyl Ligand Properties
in Rh(III)-Catalyzed C–H Activation Reactions: An Experimental
and Computational Study. J. Am. Chem. Soc. 2017, 139, 1296-
1310; (b) Piou, T.; Rovis, T., Electronic and Steric Tuning of a
Prototypical Piano Stool Complex: Rh(III) Catalysis for C–H
Functionalization. Acc. Chem. Res. 2018, 51, 170-180; (c) Piou, T.;
Romanov-Michailidis, F.; Ashley, M. A.; Romanova-Michaelides,
M.; Rovis, T., Stereodivergent Rhodium(III)-Catalyzed cis-
Cyclopropanation Enabled by Multivariate Optimization. J. Am.
Chem. Soc. 2018, 140, 9587-9593.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(18) Guzei, I. A.; Wendt, M., An improved method for the
computation of ligand steric effects based on solid angles. Dalton
Trans. 2006, 3991-3999.
(19) Verloop, A.; Tipker, J. A comparative study of new steric
parameters in drug design. Pharmacochem. Libr. 1977, 2, 63−81.
(20) (a) Caruano, J.; Muccioli, G. G.; Robiette, R. Biologically
active γ-lactams: synthesis and natural sources. Org. Biomol. Chem.
2016, 14, 10134-10156; (b) Boltjes, A.; Liao, G. P.; Zhao, T.;
Herdtweck, E.; Domling, A. Ugi 4-CR Synthesis of - and -
Lactams Providing New Access to Diverse Enzyme Interactions, a
PDB Analysis. Med. Chem. Commun. 2014, 5, 949−952; (c)
Cruciani, G.; Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, C.;
Howe, T.; Vianello, R. MetaSite: Understanding metabolism in
human cytochromes from the perspective of the chemist. J. Med.
Chem. 2005, 48, 6970−6979.
9
ACS Paragon Plus Environment