Synthesis of Isoquinolines and β-Carbolines
1998, 54, 6201–6258; c) B. E. Love, Org. Prep. Proced. Int.
1996, 28, 1–64; d) J. Valverde, G. Tamayo, M. Hesse, Phyto-
chemistry 1999, 52, 1485–1489; e) N. M. Phuong, T. Van Sung,
A. Porzel, J. Schmidt, K. Merzweiler, G. Adam, Phytochemistry
1999, 52, 1725–1729; f) J. Ishida, H.-K. Wang, M. Oyama,
M. L. Cosentino, C.-Q. Hu, K.-H. Lee, J. Nat. Prod. 2001, 64,
958–960; g) P.-C. Kuo, L.-S. Shi, A. G. Damu, C.-R. Su, C.-H.
Huang, C.-H. Ke, J.-B. Wu, A.-J. Lin, K. F. Bastow, K.-H. Lee,
T.-S. Wu, J. Nat. Prod. 2003, 66, 1324–1327; h) B. Sun, T. Mo-
rikawa, H. Matsuda, S. Tewtrakul, L. J. Wu, S. Harima, M.
Yoshikawa, J. Nat. Prod. 2004, 67, 1464–1469; i) E. V. Costa,
M. L. B. Pinheiro, C. M. Xavier, J. R. A. Silva, A. C. F. Ama-
ral, A. D. L. Souza, A. Barison, F. R. Campos, A. G. Ferreira,
G. M. C. Machado, L. L. P. Leon, J. Nat. Prod. 2006, 69, 292–
294; j) S. Fotso, R. P. Maskey, D. Schroder, A. S. Ferrer, I.
Grun-Wollny, H. Laatsch, J. Nat. Prod. 2008, 71, 1630–1633;
k) W. Wang, S.-J. Nam, B.-C. Lee, H. Kang, J. Nat. Prod. 2008,
71, 163–166; l) W.-H. Jiao, H. Gao, C.-Y. Li, F. Zhao, R.-W.
Jiang, Y. Wang, G.-X. Zhou, X.-S. Yao, J. Nat. Prod. 2010, 73,
167–171; m) W. D. Inman, W. M. Bray, N. C. Gassner, R. S.
Lokey, K. Tenney, Y. Y. Shen, K. TenDyke, T. Suh, P. Crews,
J. Nat. Prod. 2010, 73, 255–257.
For recent reports on the biological activities of isoquinolines,
see: a) S. Markmee, S. Ruchirawat, V. Prachyawarakorn, K.
Ingkaninan, N. Khorana, Bioorg. Med. Chem. Lett. 2006, 16,
2170–2172; b) B. W. Trotter, K. K. Nanda, N. R. Kett, C. P.
Regan, J. J. Lynch, G. L. Stump, L. Kiss, J. Wang, R. H. Spen-
cer, S. A. Kane, R. B. White, R. Zhang, K. D. Anderson, N. J.
Liverton, C. J. McIntyre, D. C. Beshore, G. D. Hartman, C. J.
Dinsmore, J. Med. Chem. 2006, 49, 6954–6957; c) A. L. Smith,
F. F. DeMorin, N. A. Paras, Q. Huang, J. K. Petkus, E. M.
Doherty, T. Nixey, J. L. Kim, D. A. Whittington, L. F. Epstein,
M. R. Lee, M. J. Rose, C. Babij, M. Fernando, K. Hess, Q. Le,
P. Beltran, J. Carnahan, J. Med. Chem. 2009, 52, 6189–6192;
d) Y. Song, Z. Shao, T. S. Dexheimer, E. S. Scher, Y. Pommier,
M. Cushman, J. Med. Chem. 2010, 53, 1979–1989; e) T. Ser-
betci, C. Genes, S. Depauw, S. Prado, F.-H. Poree, M.-P. Hilde-
brand, M.-H. David-Cordonnier, S. Michel, F. Tillequin, Eur.
J. Med. Chem. 2010, 45, 2547–2558.
For recent reports on the biological activities of β-carbolines,
see: a) Q. Wu, R. Cao, M. Feng, X. Guan, C. Ma, J. Liu, H.
Song, W. Peng, Eur. J. Med. Chem. 2009, 44, 533–540; b)
A. S. N. Formagio, P. R. Santos, K. Zanoli, T. Ueda-Naka-
mura, L. T. D. Tonin, C. V. Nakamura, M. H. Sarragiotto, Eur.
J. Med. Chem. 2009, 44, 4695–4701; c) A. S. N. Formagio,
L. T. D. Tonin, M. A. Foglio, C. Madjarof, J. E. de Carvalho,
W. F. da Costa, F. P. Cardoso, M. H. Sarragiotto, Bioorg. Med.
Chem. 2008, 16, 9660–9667; d) R. H. Bahekar, M. R. Jain, P. A.
Jadav, A. Goel, D. N. Patel, V. M. Prajapati, A. A. Gupta, H.
Modi, P. R. Patel, Bioorg. Med. Chem. 2007, 15, 5950–5964; e)
Y.-H. Wang, J.-G. Tang, R.-R. Wang, L.-M. Yang, Z.-J. Dong,
L. Du, X. Shen, J.-K. Liu, Y.-T. Zheng, Biochem. Biophys. Res.
Commun. 2007, 355, 1091–1095; f) R. Cao, W. Peng, Z. Wang,
A. Xu, Curr. Med. Chem. 2007, 14, 479–500; g) H. Guan, H.
Chen, W. Peng, Y. Ma, R. Cao, X. Liu, A. Xu, Eur. J. Med.
Chem. 2006, 41, 1167–1179; h) J. D. Winkler, A. T. Londregan,
M. T. Hamann, Org. Lett. 2006, 8, 2591–2594; i) M. Zhao, L.
Bi, W. Wang, C. Wang, M. Baudy-Floc’h, J. Ju, S. Peng, Bioorg.
Med. Chem. 2006, 14, 6998–7010; j) X. Yu, W. Lin, R. Pang,
M. Yang, Eur. J. Med. Chem. 2005, 40, 831–839; k) X. Yu, W.
Lin, J. Li, M. Yang, Bioorg. Med. Chem. Lett. 2004, 14, 3127–
3130; l) R. Cao, Q. Chen, X. Hou, H. Chen, H. Guan, Y. Ma,
W. Peng, A. Xu, Bioorg. Med. Chem. 2004, 12, 4613–4623.
a) Y.-G. Zhou, Acc. Chem. Res. 2007, 40, 1357–1366; b) P. Her-
mange, M. E. T. H. Dau, P. Retailleau, R. H. Dodd, Org. Lett.
2009, 11, 4044–4047; c) D. T. Gryko, J. Piechowska, M. Gale-
zowski, J. Org. Chem. 2010, 75, 1297–1300; d) G. Verniest, X.
Wang, N. D. Kimpe, A. Padwa, J. Org. Chem. 2010, 75, 424–
433; e) M. S. Taylor, N. Tokunaga, E. N. Jacobsen, Angew.
Chem. Int. Ed. 2005, 44, 6700–6704.
nish compound 4a (1.08 g, 3.55 mmol) as white solid in 89% yield,
m.p. 106–107 °C (ref.[18] 104–105 °C). 1H NMR (500 MHz,
CDCl3): δ = 3.98 (s, 3 H, OCH3), 4.00 (s, 3 H, OCH3), 7.06 (d, J
= 8.1 Hz, 1 H, Ar 6Ј-H), 7.32 (dd, J1 = 7.8, J2 = 6.9 Hz, 1 H, 6-
H), 7.48–7.59 (m, 4 H, 7-H, 8-H, Ar 2Ј-H and 5Ј-H), 7.93 (d, J =
5.3 Hz, 1 H, 4-H), 8.17 (d, J = 7.8 Hz, 1 H, 5-H), 8.55 (d, J =
5.3 Hz, 1 H, 3-H), 8.59 (s, 1 H, indole NH) ppm. IR (KBr): ν =
˜
3363 (N–H), 2935, 1626, 1516, 1457, 1409, 1319, 1260, 1235, 1144,
1025, 747 cm–1. MS (EI): m/z (%) = 304 (100) [M]+, 289 (20), 273
(19), 258 (22), 245 (11), 217 (9), 230 (6), 152 (3), 133 (3), 115 (2).
Typical Procedure for the Conversion of the N-Tosyl-THBCs 2 into
the β-Carbolines 4 with DBU as Base
Preparation of Ethyl 1-(3,4-Dimethoxyphenyl)-9H-pyrido[3,4-b]-
indole-3-carboxylate (4k): DBU (1.37 g, 9.00 mmol) was added to
a solution of compound 2k (1.59 g, 2.97 mmol) in DMSO (12 mL).
The solution was then stirred at room temperature for 4 h. The
reaction was monitored by TLC. After the reaction was complete,
the mixture was diluted with water (60 mL). The precipitate was
collected by suction and washed several times with water. The
crude product was then purified by flash chromatography (eluent:
EtOAc/chloroform 1:4) to furnish compound 4k (1.02 g,
2.71 mmol) as a white solid in 91% yield, m.p. 140–141 °C. 1H
NMR (500 MHz, [D6]DMSO): δ = 1.38 (t, J = 7.1 Hz, 3 H,
OCH2CH3), 3.88 (s, 3 H, OCH3), 3.89 (s, 3 H, OCH3), 4.40 (q, J
= 7.1 Hz, 2 H, OCH2CH3), 7.20 (d, J = 8.6 Hz, 1 H, Ar 5Ј-H),
7.31 (dd, J1 = 7.4, J2 = 7.7 Hz, 1 H, 6-H), 7.50–7.62 (m, 3 H, 7-H,
Ar 2Ј-H and 6Ј-H), 7.69 (d, J = 8.2 Hz, 1 H, 8-H), 8.40 (d, J =
7.7 Hz, 1 H, 5-H), 8.86 (s, 1 H, 4-H), 11.88 (s, 1 H, indole
NH) ppm. 13C NMR (125 MHz, [D6]DMSO): δ = 165.6 (COOEt),
149.7, 148.8, 142.3, 141.5, 136.8, 134.5, 130.3, 128.9, 128.5, 121.9,
121.3, 120.3, 116.1, 112.8, 112.1, 111.8, 60.6 (OCH2CH3), 55.7
[3]
(OCH ), 55.5 (OCH ), 14.4 (OCH CH ) ppm. IR (KBr): ν = 3423
˜
3
3
2
3
(N–H), 2937, 1709 (C=O), 1626, 1516, 1371, 1348, 1257, 1143,
1025, 746 cm–1. MS (EI): m/z (%) = 376 (37) [M]+, 304 (100), 289
(11), 273 (16), 259 (7), 243 (9), 229 (12), 216 (9), 188 (3), 137 (2).
C22H20N2O4 (376.41): calcd. C 70.20, H 5.36, N 7.44; found C
70.14, H 5.22, N 7.52.
[4]
Supporting Information (see also the footnote on the first page of
this article): Characterization data for compounds 3b–3p, 3r–3x,
4b–4j, 4l–4u, and 5–8. 1H NMR spectra of compounds 3a–3x, 4a–
4u, and 5–8. 13C NMR spectra of compounds 3a, 3g, 3h, 3i, 3j, 3o,
3s, 3t, 3w, 3x, 4b, 4d, 4e, 4f, 4k, 4m, 4o, 4p, 4q, 4s and 7.
Acknowledgments
We thank the National Natural Science Foundation of China
(grant number 20972048) and Shanghai Educational Development
Foundation (Dawn Program, grant number 03SG27) for the finan-
cial support of this work.
[1] For isoquinoline alkaloids, see: a) F. W. Bergstrom, Chem. Rev.
1944, 35, 77–277; b) K. W. Bentley, The Isoquinoline Alkaloids,
vol. 1, Hardwood Academic, Amsterdam, 1998; c) K. W.
Bently, Nat. Prod. Rep. 2005, 22, 249–268; d) K. W. Bently,
Nat. Prod. Rep. 2006, 23, 444–463; e) M. A. Rashid, K. R. Gu-
stafson, M. R. Boyd, J. Nat. Prod. 2001, 64, 1249–1250; f) D. J.
Milanowski, K. R. Gustafson, J. A. Kelley, J. B. McMahon, J.
Nat. Prod. 2004, 67, 70–73.
[5]
[2] For β-Carboline alkaloids, see: a) T. Ohmoto, K. Koike, in:
The Alkaloids, vol. 36 (Ed.: A. Brossi), Academic, San Diego,
1989, pp. 135–170; b) E. Magnier, Y. Langlois, Tetrahedron
Eur. J. Org. Chem. 2010, 6987–6992
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6991