Journal of the American Chemical Society
Communication
(10) Baudry, D.; Ephritikhine, M.; Felkin, H. J. Chem. Soc., Chem.
Commun. 1978, 16, 694. (b) Yamamoto, Y.; Miyairi, T.; Ohmura, T.;
Miyaura, N. J. Org. Chem. 1999, 64, 296. Ohmura, T.; Shirai, Y.;
Yamamoto, Y.; Miyaura, N. Chem. Commun. 1998, 1337. Ohmura, T.;
Yamamoto, Y.; Miyaura, N. Organometallics 1999, 18, 413.
(11) Lim, H. J.; Smith, C. R.; RajanBabu, T. V. J. Org. Chem. 2009,
74, 4565.
(12) (a) Sharma, S. K.; Srivastava, V. K.; Jasra, R. V. J. Mol. Catal. A:
Chemical 2006, 245, 200. (b) Jinesh, C. M.; Antonyrai, C. A.; Kannan,
S. Catal. Today 2009, 141, 176.
(13) Mirza-Aghayan, M.; Boukherroub, R.; Bolourtchian, M.;
Hoseini, M.; Tabar-Hydar, K. J. Organomet. Chem. 2003, 678, 1.
Gautheir, D.; Lindhardt, A. T.; Olsen, E. P. K.; Overgaard, J.;
Skrydstrup, T. J. Am. Chem. Soc. 2010, 132, 7998.
(14) Permin, A. B.; Petrosyan, V. S. Appl. Organomet. Chem. 1990, 4,
329. Scarso, A.; Colladon, M.; Sgarbossa, P.; Michelin, R. A.; Strukul,
G. Organometallics 2010, 29, 1487.
In summary, we show that very active catalyst 1 can be controlled
to provide mono-isomerized alkene products with very high (>106:1)
kinetic E-selectivity. These features are expected to make 1 an
attractive tool in synthesis,32 in part because the addition of an allylic
substituent (e.g., to a carbonyl) is frequently easier than the installa-
tion of a propenyl analogue. Using 1, allylic moieties can then be
readily and cleanly converted to propenyl units in a controlled
manner. Moreover, 1 allows facile access to the (E)-alkenyl aromatic
compounds useful in the pharmaceutical and fragrance industries.
Catalyst 1 achieves high E-selectivity in cases well-documented to be
of comparable thermodynamic stability as their Z-isomers, such as
enols, enol ethers, and enamides. In addition, the very mild, neutral
reaction conditions under which 1 operates allow formation of enols,
enamides, β,γ-unsaturated carbonyl compounds, and even multifunc-
tional bioactive molecules. We believe that the heterocyclic phosphine
ligand of 1 acts as a hemilabile base acting in cooperation with the
metal to promote these selective transformations. Mechanistic studies
are in progress to allow a greater understanding of the bifunctional
system and further alter and enhance its unique reactivity, in addition
to the possible applications and new chemistry catalyst 1 can provide.
(15) Tani, K.; Yamagata, T.; Akutagawa, S.; Kumobayashi, H.;
Taketomi, T.; Takaya, H.; Miyashita, A.; Noyori, R.; Otsuka, S. J. Am.
Chem. Soc. 1984, 106, 5208.
(16) Examples: Joe, D.; Overman, L. E. Tetrahedron Lett. 1997, 38,
8635. Furstner, A.; Theil, O. R.; Ackermann, L.; Schanz, H. J.; Nolan,
̈
N. P. J. Org. Chem. 2000, 65, 2204. Gurjar, M. K.; Yakambram, P.
Tetrahedron Lett. 2001, 42, 3633. Alcaide, B.; Almendros, P.; Alonso,
J. M.; Aly, M. F. Org. Lett. 2001, 3, 3781. Alcaide, B.; Almendros, P.;
Luna, A. Chem. Rev. 2009, 109, 3817.
(17) Erdogan, G.; Grotjahn, D. B. J. Am. Chem. Soc. 2009, 131, 10354.
(18) Taskinen, E.; Virtanen, R. J. Org. Chem. 1977, 42, 1443.
(19) Lastra-Barreira, B.; Crochet, P. Green Chem 2010, 12, 1311.
(20) Compound 15a can undergo further isomerization to β,γ-
unsaturated 15b (2%, 3 d, RT), increasing slowly with time (6%, 6.3 d).
ASSOCIATED CONTENT
■
S
* Supporting Information
Details of substrate preparation, characterization, and catalysis.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
(21) Markovic, D.; Vogel, P. Angew.Chem. Int. Ed. 2004, 43, 2928.
(22) Larsen, C. R.; Grotjahn, D. B. Top. Catal. 2010, 53, 1015.
(23) (a) Bergens, S. H.; Bosnich, B. J. Am. Chem. Soc. 1991, 113, 958.
Persistence of 26a: (b) Park, J.; Chin, C. S. J. Chem. Soc., Chem.
Commun. 1987, 1213. (c) Chin, C. S.; Lee, S. Y.; Park, J.; Kim, S.
J. Am. Chem. Soc. 1988, 110, 8244.
ACKNOWLEDGMENTS
■
NSF supported this work and upgrade of the departmental
NMR facility. Dr. LeRoy Lafferty assisted with NMR analysis,
and Prof. Andrew Cooksy assisted with kinetics analysis.
(24) McNaughton, B. R.; Bucholz, K. M.; Camaano-Moure, A.;
̃
Miller, B. L. Org. Lett. 2005, 7, 733.
REFERENCES
(25) Epiotis, N. D.; Bjorkquist, D.; Bjorkquist, L.; Sarkanen, S. J. Am.
Chem. Soc. 1973, 95, 7558. Bingham, R. C. J. Am. Chem. Soc. 1976, 98,
535. Knorr, R. Chem. Ber. 1980, 113, 2441.
(26) Complementary Z-selectivity but much lower catalytic activity
was recently reported for isomerization of 6 by a Pt(II) catalyst (only
45% yield in 24 h at 50 °C, but 100% selectivity).14
(27) Bessell, E. M.; Westwood, J. H. Carbohydr. Res. 1972, 25, 11.
Yuasa, Y.; Yuasa, Y. Org. Proc. Rec. Devel. 2004, 8, 405.
(28) Cunningham, J.; Gigg, R.; Warren, C. D. Tetrahedron Lett. 1964,
1191.
(29) Mereyala, H. B.; Guntha, S. Tetrahedron Lett. 1993, 34, 6929.
(30) Nkazawa, H.; Horiba, M.; Yamamoto, S. Agric. Biol. Chem.
1980, 44, 1173. He, F. Toxicology 1994, 91, 43.
(31) Pulman, D. A. J. Agric. Food Chem. 2011, 59, 2770.
(32) Catalyst 1 is now available from Strem Chemicals. The work
described here was finished before that event.
■
(1) (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Trost, B. M.;
Kulawiec, R. J. J. Am. Chem. Soc. 1993, 115, 2027. (c) Slugovc, C.; Ruba,
E.; Schmid, R.; Kirchner, K. Organometallics 1999, 18, 4230. (d) Bouziane,
A.; Carboni, B.; Bruneau, C.; Carreaux, F.; Renaud, J. Tetrahedron 2008,
́ ́
64, 11745. (e) Uma, R.; Crevisy, C.; Gree, R. Chem. Rev. 2003, 103, 27.
(2) Kuznik, N.; Krompiec, S. Coord. Chem. Rev. 2007, 251, 222.
(3) Krompiec, S.; Krompiec, M.; Penczek, R.; Ignasiak, H. Coord.
Chem. Rev. 2008, 252, 1819.
(4) Grotjahn, D. B.; Larsen, C. R.; Gustafson, J. L.; Nair, R.; Sharma,
A. J. Am. Chem. Soc. 2007, 129, 9592. Grotjahn, D. B.; Larsen, C. R.;
Erdogan, G.; Gustafson, J. L.; Sharma, A.; Nair, R. Catal. Org. React.
2009, 123, 379.
(5) Wipf, P.; Spencer, S. R. J. Am. Chem. Soc. 2005, 127, 225. Arisawa,
M.; Terada, Y.; Takahashi, K.; Nakagawa, M.; Nishida, A. J. Org. Chem.
2006, 71, 4255. Donohoe, T. J.; O’Riordan, T. J. C.; Rosa, C. P. Angew.
Chem., Int. Ed. 2009, 48, 1014.
(6) Suzuki, H.; Koyama, Y.; Moro-Oka, Y.; Ikawa, T. Tetrahedron
Lett. 1979, 20, 1415.
(7) (a) Stille, J. K.; Becker, Y. J. Org. Chem. 1980, 45, 2139.
(b) Jennerjahn, R.; Jackstell, R.; Piras, I.; Franke, R.; Jiao, H.; Bauer,
M.; Beller, M. ChemSusChem 2012, 5, 734.
(8) Hanessian, S.; Giroux, S.; Larrson, A. Org. Lett. 2006, 8, 5481.
(9) Sivaramakrishna, A.; Mushonga, P.; Rogers, I. L.; Zheng, F.;
Haines, R. J.; Nordlander, E.; Moss, J. R. Polyhedron 2008, 27, 1911.
D
dx.doi.org/10.1021/ja3036477 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX