F.-D. Boyer, J.-M. Beau et al.
(C6’), 141.9 (C4a or C8), 141.1 (C3’), 138.9 (C7 or C8a), 138.3 (C7 or
C8a), 136.4 (C4’), 135.6 (C4), 132.9 (C6), 122.6 (C5), 110.8 (C3), 100.9
(C2’), 84.3 (C8b), 80.2 (C4), 50.6 (C3a), 19.8 (C9), 15.8 (C10), 11.0 ppm
(C7’). IR (film): n˜ =3333, 1781, 1737,1675, 1329, 1183, 953 cmÀ1; MS: m/z
(%): 365 [M+Na]+ (100), 343 [M+H]+ (75); HRMS (ESI): m/z: calcd
for C19H18NaO6: 365.1001 [M+Na+]; ; found: 365.1015.
will also be useful for isotope labeling in future work in an
effort to search for and localize the strigolactone binding
proteins and quantify natural strigolactones. This approach
can also be applied to other natural strigolactones and ana-
logues. We have further demonstrated that 14 showed the
best hormonal activity in inhibiting bud outgrowth in the
pea model. More detailed structure–activity studies are
being developed in our laboratories.
CCDC-784236 and 784237 contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge from The
request/cif.
Experimental Section
Detailed experimental procedures are provided in the Supporting Infor-
mation.
Acknowledgements
Preparation of 6: Commercial CuCl (5.0 mg, 0.05 mmol, 0.05 equiv) and
dHbipy[27] (19.0 mg, 0.05 mmol, 0.05 equiv) were dissolved in degassed di-
chloroethane (2 mL) and stirred at room temperature under argon. The
solution turned dark brown after 10 min and a solution of trichloroester
7 (328.0 mg, 1.07 mmol, 1 equiv) in degassed dichloroethane (4 mL) was
added. The mixture was heated at 908C for 6 h, cooled to RT, and the
solvent was evaporated under reduced pressure. The crude product was
directly separated by column chromatography (heptane/ethyl acetate
95:5). Product 6 was obtained as a white solid (271 mg, 0.89 mmol, 83%).
Mp: 135–1378C; [a]2D6 =À130.5 (c=1.03 in CHCl3); 1H NMR (300 MHz,
CDCl3): d=7.31 (d, J6,5 =7.9 Hz, 1H; H6), 7.20 (d, J5,6 =7.9 Hz, 1H; H5),
6.03 (d, J8b,3a =5.8 Hz, 1H; H8b), 5.40 (d, J4,3a =5.8 Hz, 1H; H4), 3.98 (t,
We are grateful to Bayer SAS (contract no. 08H0120RD) and the INRA
for the financial support of this study.
Keywords: hormones · kinetic resolution · radical reactions ·
strigolactones
[1] a) K. Yoneyama, X. Xie, K. Yoneyama, Y. Takeuchi, Pest Manage.
J
3a,4 =5.8, J3a,8b =5.8 Hz, 1H; H3a), 2.34 (s, 3H; H10), 2.31 ppm (s, 3H;
[2] a) V. Gomez-Roldan, S. Fermas, P. B. Brewer, V. Puech-Pages, E. A.
Dun, J.-P. Pillot, F. Letisse, R. Matusova, S. Danoun, J.-C. Portais,
H. Bouwmeester, G. Becard, C. A. Beveridge, C. Rameau, S. F. Ro-
Yoshida, K. Akiyama, T. Arite, N. Takeda-Kamiya, H. Magome, Y.
Kamiya, K. Shirasu, K. Yoneyama, J. Kyozuka, S. Yamaguchi,
[3] M. J. Soto, M. Fernandez-Aparicio, V. Castellanos-Morales, J. M.
Garcia-Garrido, J. A. Ocampo, M. J. Delgado, H. Vierheilig, Soil
[4] H. Koltai, E. Dor, J. Hershenhorn, D. Joel, S. Weininger, S. Lekalla,
H. Shealtiel, C. Bhattacharya, E. Eliahu, N. Resnick, R. Barg, Y.
[5] M. Umehara, A. Hanada, H. Magome, N. Takeda-Kamiya, S. Yama-
[6] C. E. Cook, L. P. Whichard, B. Turner, M. E. Wall, Science 1966,
827; b) A. Besserer, V. Puech-Pages, P. Kiefer, V. Gomez-Roldan, A.
Jauneau, S. Roy, J. C. Portais, C. Roux, G. Becard, N. Sejalon-
Delmas, PLoS Biol. 2006, 4, 1239–1247.
[8] R. Matusova, K. Rani, F. W. A. Verstappen, M. C. R. Franssen,
[9] X. Xie, D. Kusumoto, Y. Takeuchi, K. Yoneyama, Y. Yamada, K.
[10] a) H. Koltai, S. P. LekKala, C. Bhattacharya, E. Mayzlish-Gati, N.
Resnick, S. Wininger, E. Dor, K. Yoneyama, K. Yoneyama, J. Her-
b) J. A. Lopez-Raez, T. Charnikhova, P. Mulder, W. Kohlen, R.
Bino, I. Levin, H. Bouwmeester, J. Agric. Food Chem. 2008, 56,
6326–6332.
H9); 13C NMR (75 MHz, CDCl3): d=167.1 (C2), 140.3 (C4a), 139.1 (C7),
135.2 (C8), 133.9 (C8a), 133.8 (C6), 122.7 (C5), 82.3 (C8b), 78.9 (C3),
66.0 (C3a), 60.6 (C4), 19.6 (C9), 15.4 ppm (C10); IR (film): n˜ =1794,
1481, 1161, 955, 825 cmÀ1; elemental analysis calcd (%) for C13H11Cl3O:
C 51.10, H 3.63, O 10.47; found: C 51.05, H 3.56, O 10.32.
Preparation of 3 and 15: Potassium tert-butoxide (67.9 mg, 0.61 mmol,
2.2 equiv) was added to a mixture of lactone 5 (60.0 mg, 0.28 mmol,
1 equiv) and ethyl formate (0.23 mL, 2.80 mmol, 10 equiv) in THF
(1 mL) at À788C under argon. It was then warmed to À408C and stirred
for 6 h at this temperature. The mixture was cooled to À608C and (Æ)-4-
bromo-2-methyl-2-buten-4-olide (99.8 mg, 0.56 mmol, 2.05 equiv) was
gradually added. The mixture was warmed to room temperature. The re-
action was quenched with AcOH (1 mL) after 12 h at this temperature.
The solvent was evaporated and the crude product was purified by prepa-
rative TLC (heptane/ethyl acetate 50:50) to afford the two diastereomers
as two pure fractions (fraction 1=15: 36.0 mg, 0.11 mmol, 38%; frac-
tion 2=3: 36.0 mg, 0.11 mmol, 38%).
Compound 15: Colorless oil; [a]2D6 =À176.4 (c=1.7 in CHCl3); 1H NMR
(300 MHz, CDCl3): d=7.54 (d, J6’,3a =2.6 Hz, 1H; H6’), 7.25 (d, J6,5
7.7 Hz, 1H; H6), 7.17 (d, J5,6 =7.7 Hz, 1H; H5), 7.00 (t, J3’,2’ =1.5, J3’,7’
=
=
1.5 Hz, 1H; H3’), 6.24 (t, J2’,3’ =1.5, J2’,7’ =1.5 Hz, 1H; H2’), 6.15 (d,
J
J
8b,3a =7.5 Hz, 1H; H8b), 5.27 (d, J4,3a =5.8 Hz, 1H; H4), 3.81 (ddd,
3a,8b =7.5, J3a,4 =5.8 Hz, J3a,6’ =2.6 Hz, 1H; H3a), 2.37 (s, 3H; H10), 2.31
(s, 3H; H9), 2.08 (d, 1H; OH), 2.05 ppm (t, J7’,2’ =1.5, J7’,3’ =1.5 Hz, 3H;
H7’); 13C NMR (75 MHz, CDCl3): d=171.0 (C2), 170.2 (C5’), 151.5 (C6’),
141.9 (C4a or C8), 141.0 (C3’), 139.0 (C7 or C8a), 138.4 (C7 or C8a),
136.6 (C4’), 135.7 (C4), 132.9 (C6), 122.5 (C5), 110.9 (C3), 100.7 (C2’),
84.2 (C8b), 80.3 (C4), 50.8 (C3a), 19.8 (C9), 15.8 (C10), 11.1 ppm (C7’);
IR (film): n˜ =3437, 1780, 1740,1677, 1334, 1186, 1092, 1016, 957 cmÀ1
;
MS: m/z (%): 365 [M+Na]+ (100), 343 [M+H]+ (75); HRMS (ESI):
m/z: calcd for C19H18NaO6 [M+Na+]: 365.1001; found: 365.1010.
[11] H. Takikawa, S. Jikumaru, Y. Sugimoto, X. Xie, K. Yoneyama, M.
Compound 3: Colorless oil; [a]2D6 =À164.2 (c=2.2 in CHCl3); 1H NMR
(300 MHz, CDCl3): d=7.55 (d, J6’,3a =2.6 Hz, 1H; H6’), 7.23 (d, J6,5
7.7 Hz, 1H; H6), 7.16 (d, J5,6 =7.7 Hz, 1H; H5), 6.99 (t, J3’,2’ =1.5, J3’,7’
=
=
review see: d) A. J. Humphrey, A. M. Galster, M. H. Beale, Nat.
1.5 Hz, 1H; H3’), 6.22 (t, J2’,3’ =1.5, J2’,7’ =1.5 Hz, 1H; H2’), 6.15 (d,
J
J
8b,3a =7.5 Hz, 1H; H8b), 5.25 (d, J4,3a =5.8 Hz, 1H; H4), 3.81 (ddd,
3a,8b =7.5, J3a,4 =5.8 Hz, J3a,6’ =2.6 Hz, 1H; H3a), 2.37 (s, 3H; H10), 2.30
(s, 3H; H9), 2.06 (d, 1H; OH), 2.05 ppm (t, J7’,2’ =1.5 Hz, J7’,3’ =1.5 Hz,
[13] In most of the previous syntheses the hydroxylation of the ABC
3H; H7’); 13C NMR (75 MHz, CDCl3): d=171.0 (C2), 170.3 (C5’), 151.8
framework resulted from nonstereoselective allylic oxidations.[12]
13944
ꢁ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2010, 16, 13941 – 13945