Organometallics 2011, 30, 921–924 921
DOI: 10.1021/om1011006
Group 5 Metal Binaphtholate Complexes for Catalytic Asymmetric
Hydroaminoalkylation and Hydroamination/Cyclization
†
†
Alexander L. Reznichenko, Thomas J. Emge, Stephan Audorsch,†,‡ Eric G. Klauber,†
€
Kai C. Hultzsch,*,† and Bernd Schmidt‡
†Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,
610 Taylor Road, Piscataway, New Jersey 08854-8087, United States , and ‡Institut fu€r Chemie,
Organische Synthesechemie, Universita€t Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Golm, Germany
Received November 23, 2010
Summary: 3,30-Silylated binaphtholate tantalum and niobium
complexes were shown to be efficient catalysts for the asym-
metric hydroaminoalkylation of N-methylaniline derivatives
and N-benzylmethylamine with simple alkenes in enantioselec-
tivities of up to 80% ee. No hydroaminoalkylation was observed
with aminoalkenes; rather, exclusive asymmetric hydroamina-
tion/cyclization took place in up to 81% ee.
added across an unsaturated carbon-carbon bond. The
hydroamination reaction has been studied intensively, also
with respect to asymmetric reactions,3 and a variety of catalyst
systems based on early2b,4 and late5 transition metals as well
as main-group metals6 have been developed. However, reports
on group 5 metal based hydroamination catalysts have been
scarce7,8 and only the hydroamination of alkynes,7a,b allenes,7a,d
and activated alkenes7a,c has been studied. The group
5 metal-catalyzed hydroamination of aminoalkenes has not
been reported, to the best of our knowledge, and no niobium-
based hydroamination catalysts are known thus far.
Furthermore, the only chiral tantalum catalyst system for
the asymmetric hydroamination of aminoallenes in up to
34% ee was introduced only very recently.7d
Hydroamination1 and hydroaminoalkylation2 are two
atom-economical processes for the synthesis of valuable
industrial and pharmaceutical amines in which an amine
N-H bond and an R-amino C-H moiety, respectively, are
*To whom correspondence should be addressed. E-mail: hultzsch@
rci.rutgers.edu.
(1) (a) Doye, S. In Science of Synthesis; Enders, D., Ed.; Thieme:
Initial reports on hydroaminoalkylation9 surfaced 30 years
ago,10 but more detailed studies utilizing titanium-,11
zirconium-,11c,12 and tantalum-based13 catalysts have been
performed only recently. In several of these studies hydro-
aminoalkylation was first observed as a side reaction of
hydroamination.11c-e,12,14 While initial catalytic studies10
€
Stuttgart, Germany, 2009; Vol. 40a, p 241. (b) Muller, T. E.; Hultzsch,
K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. (c)
Brunet, J. J.; Neibecker, D. In Catalytic Heterofunctionalization from
Hydroamination to Hydrozirconation; Togni, A., Gr€utzmacher, H., Eds.;
Wiley-VCH: Weinheim, Germany, 2001; p 91. (d) M€uller, T. E.; Beller, M.
Chem. Rev. 1998, 98, 675.
(2) (a) Roesky, P. W. Angew. Chem., Int. Ed. 2009, 48, 4892. (b)
Eisenberger, P.; Schafer, L. L. Pure Appl. Chem. 2010, 82, 1503.
(3) For reviews and accounts on asymmetric hydroamination see: (a)
Reznichenko, A. L.; Hultzsch, K. C. In Chiral Amine Synthesis: Meth-
ods, Developments and Applications; Nugent, T., Ed.; Wiley-VCH:
Weinheim, Germany, 2010; p 341. (b) Hannedouche, J.; Collin, J.; Trifonov,
A.; Schulz, E. J. Organomet. Chem. 2011, 696, 255. (c) Zi, G.
J. Organomet. Chem. 2011, 696, 68. (d) Zi, G. Dalton Trans. 2009,
9101. (e) Chemler, S. R. Org. Biomol. Chem. 2009, 7, 3009. (f) Aillaud,
I.; Collin, J.; Hannedouche, J.; Schulz, E. Dalton Trans. 2007, 5105. (g)
Hultzsch, K. C. Adv. Synth. Catal. 2005, 347, 367. (h) Hultzsch, K. C. Org.
Biomol. Chem. 2005, 3, 1819. (i) Hultzsch, K. C.; Gribkov, D. V.; Hampel, F.
J. Organomet. Chem. 2005, 690, 4441. (j) Roesky, P. W.; M€uller, T. E.
Angew. Chem., Int. Ed. 2003, 42, 2708.
(7) (a) Anderson, L. L.; Arnold, J.; Bergman, R. G. Org. Lett. 2004, 6,
2519. See also: Anderson, L. L.; Arnold, J.; Bergman, R. G. Org. Lett. 2006,
8, 2445. (b) Lorber, C.; Choukroun, R.; Vendier, L. Organometallics 2004,
23, 1845. (c) Maurya, M. R.; Arya, A.; Kumar, U.; Kumar, A.; Avecilla, F.;
Pessoa, J. C. Dalton Trans. 2009, 9555. (d) Near, K. E.; Chapin, B. M.;
McAnnally-Linz, D. C.; Johnson, A. R. J. Organomet. Chem. 2011, 696, 81.
(8) For a discussion on possible mechanisms of the tantalum-
catalyzed hydroamination of alkynes with anilines see: Anderson,
L. L.; Schmidt, J. A. R.; Arnold, J.; Bergman, R. G. Organometallics
2006, 25, 3394.
(9) The hydroaminoalkylation, as discussed in this communication,
should be distinguished from the hydroaminomethylation reaction that
proceeds via a tandem hydroformylation/reductive amination sequence;
(4) (a) Andrea, T.; Eisen, M. S. Chem. Soc. Rev. 2008, 37, 550. (b) Lee,
A. V.; Schafer, L. L. Eur. J. Inorg. Chem. 2007, 2245. (c) Severin, R.; Doye,
S. Chem. Soc. Rev. 2007, 36, 1407. (d) Odom, A. L. Dalton Trans. 2005,
225. (e) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673. (f) Doye, S.
Synlett 2004, 1653. (g) Bytschkov, I.; Doye, S. Eur. J. Org. Chem. 2003,
935. (h) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104.
€
see: (a) Eilbracht, P.; Barfacker, L.; Buss, C.; Hollmann, C.; Kitsos-
Rzychon, B. E.; Kranemann, C. L.; Rische, T.; Roggenbuck, R.;
Schmidt, A. Chem. Rev. 1999, 99, 3329. (b) Beller, M.; Seayad, J.; Tillack,
A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368.
(10) (a) Clerici, M. G.; Maspero, F. Synthesis 1980, 305. (b) Nugent,
W. A.; Ovenall, D. W.; Holmes, S. J. Organometallics 1983, 2, 161.
(11) (a) Kubiak, R.; Prochnow, I.; Doye, S. Angew. Chem., Int. Ed.
2010, 49, 2626. (b) Kubiak, R.; Prochnow, I.; Doye, S. Angew. Chem., Int.
Ed. 2009, 48, 1153. (c) Bexrud, J. A.; Eisenberger, P.; Leitch, D. C.; Payne,
P. R.; Schafer, L. L. J. Am. Chem. Soc. 2009, 131, 2116. (d) Prochnow, I.;
Kubiak, R.; Frey, O. N.; Beckhaus, R.; Doye, S. ChemCatChem 2009, 1,
162. (e) M€uller, C.; Saak, W.; Doye, S. Eur. J. Org. Chem. 2008, 2731.
(12) Bexrud, J. A.; Schafer, L. L. Dalton Trans. 2010, 39, 361.
(13) (a) Herzon, S. B.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129,
6690. (b) Herzon, S. B.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 14940.
(c) Eisenberger, P.; Ayinla, R. O.; Lauzon, J. M. P.; Schafer, L. L. Angew.
Chem., Int. Ed. 2009, 48, 8361. (d) Zi, G.; Zhang, F.; Song, H. Chem.
Commun. 2010, 46, 6296.
€
(5) (a) Jenter, J.; Luhl, A.; Roesky, P. W.; Blechert, S. J. Organomet.
Chem. 2011, 696, 406. (b) Brunet, J. J.; Chu, N. C.; Rodriguez-Zubiri, M.
Eur. J. Inorg. Chem. 2007, 4711. (c) Widenhoefer, R. A.; Han, X. Eur. J.
Org. Chem. 2006, 4555. (d) Hartwig, J. F. Pure Appl. Chem. 2004, 76, 507.
(e) Beller, M.; Breindl, C.; Eichberger, M.; Hartung, C. G.; Seayad, J.; Thiel,
O. R.; Tillack, A.; Trauthwein, H. Synlett 2002, 1579.
(6) For a review of alkali-metal-based catalyst systems see: (a)
Seayad, J.; Tillack, A.; Hartung, C. G.; Beller, M. Adv. Synth. Catal.
2002, 344, 795. More recently also alkaline-earth metals and aluminum have
been utilized. See for example: (b) Datta, S.; Gamer, M. T.; Roesky, P. W.
Organometallics 2008, 27, 1207. (c) Crimmin, M. R.; Arrowsmith, M.;
Barrett, A. G. M.; Casely, I. J.; Hill, M. S.; Procopiou, P. A. J. Am. Chem.
Soc. 2009, 131, 9670. (d) Zhang, X.; Emge, T. J.; Hultzsch, K. C. Organo-
metallics 2010, 29, 5871. (e) Dunne, J. F.; Fulton, D. B.; Ellern, A.; Sadow,
A. D. J. Am. Chem. Soc. 2010, 132, 17680. (f) Koller, J.; Bergman, R. G.
Chem. Commun. 2010, 46, 4577.
(14) As a side reaction in alkali-metal-catalyzed hydroaminations:
´
Horrillo-Martınez, P.; Hultzsch, K. C.; Gil, A.; Branchadell, V. Eur. J.
Org. Chem. 2007, 3311.
r
2011 American Chemical Society
Published on Web 01/12/2011
pubs.acs.org/Organometallics