ORGANIC
LETTERS
2011
Vol. 13, No. 4
819–821
Enantioselective Palladium-Catalyzed
Carbozincation of Cyclopropenes
€
Katja Kramer, Paul Leong, and Mark Lautens*
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario
M5S 3H6, Canada
Received December 9, 2010
ABSTRACT
A highly enantioselective palladium-catalyzed carbozincation of cyclopropenes has been developed. The intermediate cyclopropylzinc species,
after transmetalation with copper, were trapped with various electrophiles. This one-pot procedure furnished functionalizied cyclopropenes with
excellent diastereo- and enantioselectivity.
Functionalized cyclopropanes are highly attractive tar-
gets in organic synthesis because they are structural com-
ponents of many biologically relevant materials.1,2 Asym-
metric transition-metal catalyzed additions to the double
bond of cyclopropenes are powerful reactions for the
construction of such cyclopropanes since desymmetriza-
tion leads to multiple stereocenters in one step. In the past
few years, several new catalytic asymmetric addition reac-
tions to cyclopropenes have been developed.3
tion reactions such as hydroboration,4 -stannation,5,6 -silyla-
tion, and -germylation.6 More recently rhodium-cata-
lyzed hydroformylation7 and hydroacylation8 reactions of
cyclopropenes were described. Palladium-catalyzed addi-
tions to cyclopropenes such as hydrophosphorination,
hydrophosphinylation9 and the addition of alkynes have
appeared.10 Carbometalation, on the other hand, offers the
possibility to directly functionalize two carbon atoms in a
single pot. In 2000 Nakamura has shown an enantioselective
iron-catalyzed system for the addition of diorganozinc
reagents to cyclopropenone ketals.11 Later Fox reported
a directed carbomagnesation of hydroxymethylcyclo-
propenes in the presence of copper catalysts.12 Marek
In the early 2000s, Gevorgyan reported on highly stereo-
and regioselective transition-metal catalyzed hydrometala-
(1) Fox, J. M.; Yan, N. Curr. Org. Chem. 2005, 9, 719.
(2) (a) Pietruszka, J. Chem. Rev. 2003, 103, 1051. (b) Wessjohann,
€
L. A.; Brandt, W. Chem. Rev. 2003, 103, 1625. (c) Salaun, J. Top. Curr.
(6) Trofimov, A.; Rubina, M.; Gevorgyan, V. J. Org. Chem. 2007, 72,
8910.
(7) Sherrill, W. M.; Rubin, M. J. Am. Chem. Soc. 2008, 130, 13804.
(8) Phan, D. H. T.; Kou, K. G. M.; Dong, V. M. J. Am. Chem. Soc.
2010, 132, 16354.
(9) Alnasleh, B. K.; Sherrill, W. M; Rubin, M. Org. Lett. 2008, 10,
3231.
(10) Yin, J.; Chisholm, J. D. Chem. Commun. 2006, 632.
(11) (a) Nakamura, E.; Yoshikai, N. J. Org. Chem. 2010, 75, 6061.
(b) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 2000,
122, 978.
Chem. 2000, 207, 1. (d) Liu, H.; Walsh, C. T. Biochemistry of the
Cyclopropyl Group. In The Chemistry of the Cyclopropyl Group; Patai,
S., Rappaport, Z., Eds.; Wiley: Chichester, 1987; p 959.
(3) Recent reviews of cyclopropene chemistry: (a) Marek, I.; Simaan,
S.; Masarwa, A. Angew. Chem., Int. Ed. 2007, 46, 7364. (b) Rubin, M.;
Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117. (c) Rubin, M.;
Rubina, M.; Gevorgyan, V. Synthesis 2006, 1221. (d) Fox, J. M.; Yan, N.
Curr. Org. Chem. 2005, 9, 719. (e) Nakamura, M.; Isobe, H.; Nakamura,
E. Chem. Rev. 2003, 103, 1295.
(4) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2003,
125, 7198.
(5) (a) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc.
2004, 126, 3688. (b) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am.
Chem. Soc. 2002, 124, 11566.
(12) (a) Liao, L.; Fox, J. M. J. Am. Chem. Soc. 2002, 124, 14322.
(b) Liu, X.; Fox, J. M. J. Am. Chem. Soc. 2006, 128, 5600. (c) Yan, N.;
Liu, X.; Fox, J. M. J. Org. Chem. 2008, 73, 563.
r
10.1021/ol1029904
2011 American Chemical Society
Published on Web 01/20/2011