Zhao et al.
JOCArticle
minimizing wasteful byproducts.3-8 Significant advances in
direct arylation reactions have been achieved by employing
a variety of catalyst systems incorporating Pd,4 Rh,5 Ru,6
Cu,7 Ni,8 and Fe.9 These established methods demonstrated
that direct arylation reactions not only offer improved ef-
ficiency to the overall processes by using simple arenes in
place of organometallics and/or aryl halides but also provide
a strategic solution to long-standing challenges associated
with the use of problematic organometallics. For example,
the elegant studies by Fagnou and Daugulis established the
direct arylation of polyfluorobenzenes with aryl halides,
eliminating the need for electron-deficient polyfluoroaryl
organoboron reagents.7b,10 The reactivity of acidic C-H
bond toward direct arylation is applicable to the syntheses
of the nitrogen-containing heterobiaryls in which readily
available and cheap electron-deficient nitrogen hetero-
cycles such as pyridine N-oxides were used as replace-
ments for unstable and/or unisolable heterocyclic organo-
metallics.11
Metal-catalyzed decarboxylative aryl-aryl cross-coupling
provides another promising access to (hetero)biaryl com-
pounds, in which aromatic carboxylic acids are used as
arylating reagents in place of expensive organometallic
reagents in traditional cross-coupling reactions.12 Owing
to ready availability of a wide range of aromatic carboxylic
acids, decarboxylative cross-coupling reactions have at-
tracted considerable interest since the pioneering studies
by Myers13 and Goossen14 were reported. As a result,
successes in decarboxylative cross-coupling of aromatic
carboxylic acids with aryl halides or olefins have been
accomplished by using Pd/Cu,14a-f Pd/Ag,13,15 Pd,16
and Cu17 catalysts, and the decarboxylative coupling reac-
tions of R-amino acids with different nucleophiles have
been established.18 Yu19 and Daugulis20 have indepen-
dently developed catalytic methods for carboxyl-directed
ortho-C-H functionalization, and Miura’s seminal work on
coupling reaction of benzoic acids with alkynes for con-
struction of fused rings has further highlighted the great
potential of benzoic acids to serve as versatile starting
materials for syntheses of complex molecules.21
(4) For selected direct arylation processes with Pd, see: (a) Okazawa, T.;
Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2002, 124, 5286.
(b) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc.
2006, 128, 4972. (c) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128,
16496. (d) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. (e) Dwight,
T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9,
3137. (f) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc. 2007,
129, 9879. (g) Mariampillai, B.; Alliot, J.; Li, M.; Lautens, M. J. Am. Chem.
Soc. 2007, 129, 15372. (h) Turner, G. L.; Morris, J. A.; Greaney, M. F.
Angew. Chem., Int. Ed. 2007, 46, 7996. (i) Lebrasseur, N.; Larrosa, I. J. Am.
Chem. Soc. 2008, 130, 2926. (j) Gorelsky, S. I.; Lapointe, D.; Fagnou, K.
J. Am. Chem. Soc. 2008, 130, 10848. (k) Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi,
Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1115. (l) Yang, S.-D.; Sun, C.-L.; Fang,
Z.; Li, B.-J.; Li, Y.-Z.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1473.
(m) Goikhman, R.; Jacques, T. L.; Sames., D. J. Am. Chem. Soc. 2009, 131,
3048. (n) Xiao, B.; Fu, Y.; Xu, J.; Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am.
Chem. Soc. 2010, 132, 468. (o) Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan, J.;
Gao, G.; Hu, C.; You, S. J. Am. Chem. Soc. 2010, 132, 1822. (p) Huang, J. K.;
Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M.
J. Am. Chem. Soc. 2010, 132, 3674. (q) Zhao, X.; Yeung, C. S.; Dong, V. M.
J. Am. Chem. Soc. 2010, 132, 5837.
(5) For selected direct arylation processes with Rh, see: (a) Bedford,
R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. Angew. Chem., Int. Ed.
2003, 42, 112. (b) Oi, S.; Watanabe, S.; Fukita, S.; Inoue, Y. Tetrahedron Lett.
2003, 44, 8665. (c) Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.; Ellman,
J. A. Org. Lett. 2004, 6, 35. (d) Wang, X.; Lane, B. S.; Sames, D. J. Am. Chem.
Soc. 2005, 127, 4996. (e) Wiedemann, S. H.; Lewis, J. C.; Ellman, J. A.;
Bergman, R. G. J. Am. Chem. Soc. 2006, 128, 2452. (f) Lewis, J. C.; Wu, J. Y.;
Bergman, R. G.; Ellman, J. A. Angew. Chem., Int. Ed. 2006, 45, 1589.
(g) Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami, K. J. Am. Chem. Soc.
2006, 128, 11748. (h) Proch, S.; Kempe, R. Angew. Chem., Int. Ed. 2007, 46,
3135. (i) Zhao, X.; Yu, Z. J. Am. Chem. Soc. 2008, 130, 8136. (j) Berman,
A. M.; Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008,
130, 14926. (k) Kim, M.; Kwak, J.; Chang, S. Angew. Chem., Int. Ed. 2009,
48, 8935.
(11) (a) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc.
2005, 127, 18020. (b) Leclerc, J.-P.; Fagnou, K. Angew. Chem., Int. Ed. 2006,
45, 7781. (c) Campeau, L.-C.; Schipper, D. J.; Fagnou, K. J. Am. Chem. Soc.
2008, 130, 3266. (d) Campeau, L.-C.; Bertrand-Laperle, M.; Leclerc, J.-P.;
Villemure, E.; Gorelsky, S.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3276.
(e) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254.
(12) Baudoin, O. Angew. Chem., Int. Ed. 2007, 46, 1373.
(13) (a) Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc.
2002, 124, 11250. (b) Tanaka, D.; Myers, A. G. Org. Lett. 2004, 6, 433.
(c) Tanaka, D.; Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 10323.
(14) (a) Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662.
(6) For selected direct arylation processes with Ru, see: (a) Oi, S.; Fukita,
S.; Hirata, N.; Watanuki, N.; Miyano, S.; Inoue, Y. Org. Lett. 2001, 3, 2579.
(b) Oi, S.; Ogino, Y.; Fukita, S.; Inoue, Y. Org. Lett. 2002, 4, 1783.
(c) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc.
2003, 125, 1698. (d) Ackermann, L. Org. Lett. 2005, 7, 3123. (e) Kakiuchi, F.;
Matsuura, Y.; Kan, S.; Chatani, N. J. Am. Chem. Soc. 2005, 127, 5936.
(f) Ackermann, L.; Althammer, A.; Born, R. Angew. Chem., Int. Ed. 2006, 45,
(b) Goossen, L. J.; Rodrıguez, N.; Melzer, B.; Linder, C.; Deng, G.; Levy, L. M.
´
J. Am. Chem. Soc. 2007, 129, 4824. (c) Goossen, L. J.; Melzer, B. J. Org. Chem.
2007, 72, 7473. (d) Goossen, L. J.; Knauber, T. J. Org. Chem. 2008, 73, 8631.
(e) Goossen, L. J.; Zimmermann, B.; Knauber, T. Angew. Chem., Int. Ed. 2008,
47, 7103. (f) Goossen, L. J.; Rodrı
130, 15248. (g) Goossen, L. J.; Rudolphi, F.; Oppel, C.; Rodrı
Chem., Int. Ed. 2008, 47, 3043. (h) Goossen, L. J.; Rodrıguez, N.; Lange, P. P.;
Linder, C. Angew. Chem., Int. Ed. 2010, 49, 1111.
´
guez, N.; Linder, C. J. Am. Chem. Soc. 2008,
´
guez, N. Angew.
ꢀ
2619. (g) Ackermann, L.; Born, R.; Alvarez-Bercedo, P. Angew. Chem., Int. Ed.
´
€
2007, 46, 6364. (h) Ozdemir, I.; Demir, S.; C-etinkaya, B.; Gourlaouen, C.;
Maseras, F.; Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156.
(i) Ackermann, L.; Mulzer, M. Org. Lett. 2008,10, 5043. (j) Oi, S.; Funayama, R.;
Hattori, T.; Inoue, Y. Tetrahedron 2008, 64, 6051.
(15) (a) Becht, J.-M.; Le Drian, C. Org. Lett. 2008, 10, 3161. (b) Becht,
J.-M.; Catala, C.; Le Drian, C.; Wagner, A. Org. Lett. 2007, 9, 1781. (c)Wang, Z.;
Ding, Q.; He, X.; Wu, J. Tetrahedron 2009, 65, 4635.
(7) For selected direct arylation processes with Cu, see: (a) Do, H.-Q.;
Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404. (b) Do, H.-Q.; Khan,
R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185. (c) Phipps, R. J.;
Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172. (d) Do,
H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2009, 131, 17052. (e) Do, H.-Q.;
Daugulis, O. Chem. Commun. 2009, 6433. (f) Phipps, R. J.; Gaunt, M. J.
Science 2009, 323, 1593. (g) Zhao, D.; Wang, W.; Yang, F.; Lan, j.; Yang, L.;
Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 4884.
(16) (a) Forgione, P.; Brochu, M.-C.; St-Onge, M.; Thesen, K. H.; Bailey,
M. D.; Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350. (b) Moon, J.; Jang,
M.; Lee, S. J. Org. Chem. 2009, 74, 1403. (c) Miyasaka, M.; Fukushima, A.;
Satoh, T.; Hirano, K.; Miura, M. Chem.;Eur. J. 2009, 15, 3674. (d) Hu, P.;
Kan, J.; Su, W.; Hong, M. Org. Lett. 2009, 11, 2341. (e) Shang, R.; Xu, Q.;
Jiang, Y.-Y.; Wang, Y.; Liu, L. Org. Lett. 2010, 12, 1000.
(17) Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L. Angew.
Chem., Int. Ed. 2009, 48, 9350.
(8) For selected direct arylation processes with Ni, see: (a) Tobisu, M.;
Hyodo, I.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 12070. (b) Canivet, J.;
Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009, 11, 1733. (c) Hachiya, H.;
Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 1737. (d) Hachiya, H.;
Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2010, 49, 2202.
(9) (a) Wen, J.; Zhang, J.; Chen, S.-Y.; Li, J.; Yu, X.-Q. Angew. Chem.,
Int. Ed. 2008, 47, 8897. (b) Yoshikai, N.; Matsumoto, A.; Norinder, J.;
Nakamura, E. Angew. Chem., Int. Ed. 2009, 48, 2925. (c) Liu, W.; Cao, H.;
Lei, A. Angew. Chem., Int. Ed. 2010, 49, 2004.
(18) Bi, H.-P.; Zhao, L.; Liang, Y.-M.; Li, C.-J. Angew. Chem., Int. Ed.
2009, 48, 792.
(19) (a) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazznao, S. P.;
Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510. (b) Wang, D.-H.;
Sheng, T.-M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 17676. (c) Giri, R.; Yu,
J.-Q. J. Am. Chem. Soc. 2008, 130, 14082. (d) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q.
Angew. Chem., Int. Ed. 2009, 48, 6097. (e) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.;
Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460. (f) Wang, D.-H.;
Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327, 315.
(10) (a) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am.
Chem. Soc. 2006, 128, 8754. (b) Lafrance, M.; Shore, D.; Fagnou, K. Org.
Lett. 2006, 22, 5097. (c) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130,
1128.
(20) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc. 2007,
129, 9879.
(21) Yamashita, M.; Horiguchi, H.; Hirano, K.; Satoh, T.; Miura, M. J. Org.
Chem. 2009, 74, 7481.
J. Org. Chem. Vol. 76, No. 3, 2011 883